• 제목/요약/키워드: macro particle

검색결과 68건 처리시간 0.041초

Two scale modeling of behaviors of granular structure: size effects and displacement fluctuations of discrete particle assembly

  • Chu, Xihua;Yu, Cun;Xiu, Chenxi;Xu, Yuanjie
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.315-334
    • /
    • 2015
  • This study's primary aim is to check the existence of a representative volume element for granular materials and determine the link between the properties (responses) of macro structures and the size of the discrete particle assembly used to represent a constitutive relation in a two-scale model. In our two-scale method the boundary value problem on the macro level was solved using finite element method, based on the Cosserat continuum; the macro stresses and modulus were obtained using a solution of discrete particle assemblies at certain element integration points. Meanwhile, discrete particle assemblies were solved using discrete element method under boundary conditions provided by the macro deformation. Our investigations focused largely on the size effects of the discrete particle assembly and the radius of the particle on macro properties, such as deformation stiffness, bearing capacity and the residual strength of the granular structure. According to the numerical results, we suggest fitting formulas linking the values of different macro properties (responses) and size of discrete particle assemblies. In addition, this study also concerns the configuration and displacement fluctuation of discrete particle assemblies on the micro level, accompanied with the evolution of bearing capacity and deformation on the macro level.

Ab Initio Dispersion Polymerization of Styrene in the Presence of the Poly(methacrylic acid) Macro-RAFT Agent

  • Wi, Yeon-Hwa;Lee, Kang-Seok;Lee, Byung-Hyung;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • 제17권10호
    • /
    • pp.750-756
    • /
    • 2009
  • Stable, spherical, polystyrene particles were synthesized in ab initio dispersion polymerization by using the poly(methacrylic acid)[PMAA] macro-RAFT agent. The presence of the PMAA macro-RAFT agent on the polystyrene (PS) particles was confirmed by NMR and FTIR spectroscopy. The PS particle size was influenced by the concentration of the RAFT agent and monomer due to the initial nucleation. When the concentration of the PMAA macro-RAFT agent was increased from 2 to 10 wt% relative to the monomer, the average particle size decreased from 2.31 to 1.36 ${\mu}m$, the conversion decreased from 93.3 to 88.9%, the weight-average molecular weight increased from 46,300 to 150,200 g $mol^{-1}$ and the PDI decreased from 2.79 to 1.94, respectively. In particular, the incorporation of 10 wt% of PMAA macro-RAFT agent produced monodisperse PS spheres of 1.36 ${\mu}m$ with a coefficient of variation (CV) of 6.44%. Thus, the PMAA macro-RAFT agent worked as a reactive steric stabilizer providing monodisperse, micron-sized, PS particles.

Preparation of Ceramic Foam Filter and Air Permeability (집진용 세라믹 필터의 제조 및 공기 투과 특성)

  • 박재구
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제16권4호
    • /
    • pp.381-388
    • /
    • 2000
  • Ceramic foam prepared with cordierite as a starting material by foam method was tested to evaluate the feasibility as a filter for the dust collection in hot gas. Two different types of agents Benzethonium chloride (BZTC, C27H42NO2Cl) and Sodium Lauryl Sulfate(SLS, CH3(CH2)11OSO3Na) were used as foaming agents in foaming process. Porosityof ceramic foam was about 80% and mean pore size were 100${\mu}{\textrm}{m}$ for SLS agent and 200 ${\mu}{\textrm}{m}$ for BZTC. It was observed that ceramic foam was composed of continuous macro-pore structure with opening windows interconnecting macro-pores. The surface of ceramic foam support of was coated with cordierite particles ranged from 20${\mu}{\textrm}{m}$ to 50${\mu}{\textrm}{m}$ Meso-pore size in the coating layer on ceramic foam was below 10${\mu}{\textrm}{m}$. While air permeability of the support increased with increasing macro-pore size coated ceramic filters showed a constant permeability without regard to the macro-pore size of the support. The permeabuilities of support varied in the range of 600$\times$10-13m2 to 1000$\times$10-13m2. For the case of coated ceramic filter it was about 200$\times$10-13m2. As a result of particle trapping test by using fly ash the particle removal efficiency was over the 99.9%.

  • PDF

A systematic approach to the calibration of micro-parameters for the flat-jointed bonded particle model

  • Zhou, Changtai;Xu, Chaoshui;Karakus, Murat;Shen, Jiayi
    • Geomechanics and Engineering
    • /
    • 제16권5호
    • /
    • pp.471-482
    • /
    • 2018
  • A flat-jointed bonded-particle model (BPM) has been proved to be an effective tool for simulating mechanical behaviours of intact rocks. However, the tedious and time-consuming calibration procedure imposes restrictions on its widespread application. In this study, a systematic approach is proposed for simplifying the calibration procedure. The initial relationships between the microscopic, constitutive parameters and macro-mechanical rock properties are firstly determined through dimensionless analysis. Then, sensitivity analyses and regression analyses are conducted to quantify the relationships, using results from numerical simulations. Finally, four examples are used to demonstrate the effectiveness and robustness of the proposed systematic approach for the calibration procedure of BPMs.

Characteristics of Particle Laden Flows in Circular Microchannels (원형 마이크로채널 내의 입자가 부유된 유동의 특성)

  • Kim Y.W.;Jin S.W.;Yoo J.Y.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.85-88
    • /
    • 2005
  • Experimental study has been conducted to evaluate characteristics of particle laden flows at the ratio of channel diameter to particle diameter (B = 14.9, 21.6 and 55). Particle velocities and radial concentrations are obtained using a microscope Nd:YAG laser and cooled CCD camera. Results show that there are relative velocities between the fluid and the particles at B = 14.9. It is also observed that the particles are accumulated at r=$0.5\∼0.82R$, with R being tile tube radius, and particle migration occurs at small Reynolds number, by comparing with the results obtained in macro scale. This gives optimal factors for designing microfluidic channels for cell or Particle separation, particle focusing, and so on.

  • PDF

A parameter calibration method for PFC simulation: Development and a case study of limestone

  • Xu, Z.H.;Wang, W.Y.;Lin, P.;Xiong, Y.;Liu, Z.Y.;He, S.J.
    • Geomechanics and Engineering
    • /
    • 제22권1호
    • /
    • pp.97-108
    • /
    • 2020
  • The time-consuming and less objectivity are the main problems of conventional micromechanical parameters calibration method of Particle Flow Code simulations. Thus this study aims to address these two limitation of the conventional "trial-and-error" method. A new calibration method for the linear parallel bond model (CM-LPBM) is proposed. First, numerical simulations are conducted based on the results of the uniaxial compression tests on limestone. The macroscopic response of the numerical model agrees well with the results of the uniaxial compression tests. To reduce the number of the independent micromechanical parameters, numerical simulations are then carried out. Based on the results of the orthogonal experiments and the multi-factor variance analysis, main micromechanical parameters affecting the macro parameters of rocks are proposed. The macro-micro parameter functions are ultimately established using multiple linear regression, and the iteration correction formulas of the micromechanical parameters are obtained. To further verify the validity of the proposed method, a case study is carried out. The error between the macro mechanical response and the numerical results is less than 5%. Hence the calibration method, i.e., the CM-LPBM, is reliable for obtaining the micromechanical parameters quickly and accurately, providing reference for the calibration of micromechanical parameters.

A Study for the Adaptation of Simulation of Uniaxial Compressive Strength Test for Concrete in 3-Dimensional Particle Bonded Model (3차원 입자 결합 모델에서 콘크리트의 일축압축실험 모사 적용성 연구)

  • Lee, Hee-Kwang;Jeon, Seok-Won
    • Journal of the Korea Concrete Institute
    • /
    • 제20권2호
    • /
    • pp.147-156
    • /
    • 2008
  • In an uniaxial compressive test of a concrete standard specimen (150$\times$300 mm) the crack initiation and extension with the stress increase are the major reason of the failure, which is similar to the breakage of the particle bonding in the simulation by using particle bonded model, especially particle flow code in 3 dimensions (PFC3D) developed by Itasca Consulting Group Inc. That is the main motive to study the possibility of an uniaxial compressive strength test simulation. It is important to investigate the relationship between the micro-parameters and the macro-properties because the 3-dimensional particle bonded model uses the spherical particles to analyze the physical phenomena. Contact bonded model used herein has eight micro-parameters and there are five macro-properties; Young's modulus, Poisson's ratio, uniaxial compressive strength and the crack initiation stress and the ratio concerning the crack propagation with the stress. To simulate the compressive test we made quantitative relationships between the micro-parameters and the macro-properties by using the fractional factorial design and various sensitivity analyses including regression analysis, which result in the good agreement with the previous studies. Also, the stress-stain curve and the crack distribution over the specimen given by PFC3D showed the mechanical behavior of the concrete standard specimen under the uniaxial compression. It is concluded that the particle bonded model can be a good tool for the analyzing the mechanical behavior of concrete under the uniaxial compressive load.

DISCRETE PARTICLE SIMULATION OF DENSE PHASE PARTICULATE FLOWS

  • Tsuji Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.11-19
    • /
    • 2005
  • First, methods of numerical analysis of gas-particle flows is classified into micro, meso and macro scale approaches based on the concept of multi-scale mechanics. Next, the explanation moves on to discrete particle simulation where motion of individual particles is calculated numerically using the Newtonian equations of motion. The author focuses on the cases where particle-to-particle interaction has significant effects on the phenomena. Concerning the particle-to-particle interaction, two cases are considered: the one is collision-dominated flows and the other is the contact-dominated flows. To treat this interaction mathematically, techniques named DEM(Distinct Element Method) or DSMC (Direct Simulation Monte Carlo) have been developed DEM, which has been developed in the field of soil mechanics, is useful for the contact -dominated flows and DSMC method, developed in molecular gas flows, is for the collision-dominated flows. Combining DEM or DSMC with CFD (computer fluid dynamics), the discrete particle simulation becomes a more practical tool for industrial flows because not only the particle-particle interaction but particle-fluid interaction can be handled. As examples of simulations, various results are shown, such as hopper flows, particle segregation phenomena, particle mixing in a rotating drum, dense phase pneumatic conveying, spouted bed, dense phase fluidized bed, fast circulating fluidized bed and so on.

  • PDF

Evaluation of Mechanical Test Characteristics of Fillet Welding (필릿 용접의 기계적 시험 특성 평가)

  • Cho, Byung-Jun;Lee, Soung-Jun;Rhim, Jong-Guk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제21권2호
    • /
    • pp.535-541
    • /
    • 2020
  • FCAW is used mainly in the welding of carbon steel and alloy steel because it can be welded in all positions and can obtain excellent quality at sites with variable working conditions. Recently, many studies in Korea have estimated the fatigue strength, residual stress, and deformation, and to develop a fillet welding process. On the other hand, there have been few studies of the mechanical properties based on the strength, macro and magnetic particle test results for fillet welding. This study shows the following results through fillet welding, macro testing and strength testing using SM490A (solid-structure rolled steel) for thick plates using SS400 (rolled steel) for the upper plate and FCAW. The hardness test, macro test and magnetic particle test were then conducted. The hardness tests showed that all result values were smaller than the KS B 0893 standard values of 350Hv. The macro-test showed that each type of welded part was in a normal organic state and that there were no internal errors, bubbles, or impurities on the front of the welded part. Therefore, there were no concerns about lamination. The magnetic particle examination showed no problems.

Impact of Biochar Particle Shape and Size on Saturated Hydraulic Properties of Soil

  • Lim, Tae-Jun;Spokas, Kurt
    • Korean Journal of Environmental Agriculture
    • /
    • 제37권1호
    • /
    • pp.1-8
    • /
    • 2018
  • BACKGROUND: Different physical and chemical properties of biochar, which is made out of a variety of biomass materials, can impact water movement through amended soil. The objective of this research was to develop a decision support tool evaluating the impact of the shape and the size distribution of biochar on soil saturated hydraulic conductivity ($K_{sat}$). METHODS AND RESULTS: Plastic beads of different size and morphology were compared with biochar to assess impacts on soil $K_{sat}$. Bead and biochar were added at the rate of 5% (v/w) to coarse sand. The particle size of bead and biochar had an effect on the $K_{sat}$, with larger and smaller particle sizes than the original sand grain (0.5 mm) decreasing the $K_{sat}$ value. The equivalent size bead or biochar to the sand grains had no impact on $K_{sat}$. The amendment shape also influenced soil hydraulic properties, but only when the particle size was between 3-6 mm. Intra-particle porosity had no significant influence on the $K_{sat}$ due to its small pore size and increased tortuosity compared to the inter-particle spaces (macro-porosity). CONCLUSION: The results supported the conclusion that both particle size and shape of the amended biochar impacted the $K_{sat}$ value.