Castaneda, Sebastian Soler;Nam, Kevin;Joo, Youyeon;Paek, Yunheung
한국정보처리학회:학술대회논문집
/
한국정보처리학회 2022년도 춘계학술발표대회
/
pp.161-164
/
2022
Homomorphic Encryption (HE) schemes have been recently growing as a reliable solution to preserve users' information owe to maintaining and operating the user data in the encrypted state. In addition to that, several Neural Networks models merged with HE schemes have been developed as a prospective tool for privacy-preserving machine learning. Those mentioned works demonstrated that it is possible to match the accuracy of non-encrypted models but there is always a trade-off in the computation time. In this work, we evaluate the implementation of CKKS HE scheme operations over the layers of a LeNet5 convolutional inference model, however, owing to the limitations of the evaluation environment, the scope of this work is not to develop a complete LeNet5 encrypted model. The evaluation was performed using the MNIST dataset with Microsoft SEAL (MSEAL) open-source homomorphic encryption library ported version on Python (PyFhel). The behavior of the encrypted model, the limitations faced and a small description of related and future work is also provided.
Sinkhole subsidence and collapse is a common geohazard often formed in karst areas such as the state of Florida, United States of America. To predict the sinkhole occurrence, we need to understand the formation mechanism of sinkhole and its karst hydrogeology. For this purpose, investigating the factors affecting sinkholes is an essential and important step. The main objectives of the presenting study are (1) the development of a machine learning (ML)-based model, namely C5.0 decision tree (C5.0 DT), for the prediction of sinkhole susceptibility, which accounts for sinkhole/subsidence inventory and sinkhole contributing factors (e.g., geological/hydrogeological) and (2) the construction of a regional-scale sinkhole susceptibility map. The study area is east central Florida (ECF) where a cover-collapse type is commonly reported. The C5.0 DT algorithm was used to account for twelve (12) identified hydrogeological factors. In this study, a total of 1,113 sinkholes in ECF were identified and the dataset was then randomly divided into 70% and 30% subsets for training and testing, respectively. The performance of the sinkhole susceptibility model was evaluated using a receiver operating characteristic (ROC) curve, particularly the area under the curve (AUC). The C5.0 model showed a high prediction accuracy of 83.52%. It is concluded that a decision tree is a promising tool and classifier for spatial prediction of karst sinkholes and subsidence in the ECF area.
Objectives The aim was to develop a method for detecting Sasang constitution based on the ratio of facial landmarks and provide an objective and reliable tool for Sasang constitution classification. Methods Facial images, KS-15 scores, and certainty scores were collected from subjects identified by Korean Medicine Data Center. Facial ratio landmarks were detected, yielding 2279 facial ratio features. Tree-based models were trained to classify Sasang constitution, and Shapley Additive Explanations (SHAP) analysis was employed to identify important facial features. Additionally, Body Mass Index (BMI) and personality questionnaire were incorporated as supplementary information to enhance model performance. Results Using the Tree-based models, the accuracy for classifying Taeeum, Soeum, and Soyang constitutions was 81.90%, 90.49%, and 81.90% respectively. SHAP analysis revealed important facial features, while the inclusion of BMI and personality questionnaire improved model performance. This demonstrates that facial ratio-based Sasang constitution analysis yields effective and accurate classification results. Conclusions Facial ratio-based Sasang constitution analysis provides rapid and objective results compared to traditional methods. This approach holds promise for enhancing personalized medicine in Korean traditional medicine.
최근 AI기반 온라인 번역 도구의 활용도가 높아짐에 따라 이에 대한 교육적 활용 방안 및 효과에 대한 관심이 높아지고 있다. 본 연구에서는 초등 예비교사를 30명을 대상으로 AI기반 온라인 번역도구를 활용한 영작문 과업을 수행하고 영어 글쓰기 능력에 미치는 영향과 실제적 경험을 기반으로 AI번역도구에 대한 활용 가능성, 교육적 활용도 및 장단점 등에 대한 인식을 살펴보았다. 작문시험, 설문조사와 인터뷰를 통해 수집된 자료를 바탕으로 분석한 결과, 영어 글쓰기의 완성도 및 충실도에 있어서 유의미한 증가를 보였으며, 학습자들의 인식에서도 번역도구의 사용은 학습에 대한 즉각적인 지원과 편의성을 제공, 효과적인 도구활용을 위한 교육적 전략의 필요성에 대한 긍정적 인식도 나타났으나, 번역의 완성도나 정확성을 높이기 위한 방법, 도구 활용에 대한 과용과 의존성에 대한 우려도 제기되었다. 번역도구의 효과적 활용을 위해서 교육적 전략이나 교사의 역할의 중요한 것으로 나타났다.
데이터로부터 학습하여 룰을 추출하는 귀납적 학습기법은 데이터 마이닝의 주요 도구 중 하나이다. 귀납적 학습 기법은 불필요한 변수나 잡음이 섞인 변수를 포함하여 학습하는 경우 생성된 룰의 예측 성능이 떨어지고 불필요하게 룰이 복잡하게 구성될 수 있다. 따라서 귀납적 학습 기법의 예측력을 높이고 룰의 구성도 간단하게 할 수 있는 주요 변수 부분집합을 선정하는 방안이 필요하다. 귀납적 학습에서 예측력을 높이기 위해 많이 사용되는 부분집합 선정을 위한 포장 기법은 최적의 부분집합을 찾기 위해 전체 부분집합을 탐색한다. 이때 전체 변수의 수가 많아지면 부분집합의 탐색 공간이 너무 커져서 탐색하기 어려운 문제가 된다. 본 연구에서는 포장 기법에 신경망 민감도 분석을 결합한 귀납적 학습 기법의 변수 부분집합 선정 방안을 제시한다. 먼저, 신경망의 민감도 분석 기법을 이용하여 전체 변수를 중요도 순으로 순서화 한다. 다음에 순서화된 정보를 이용하여 귀납적 학습 기법의 예측력을 높일 수 있는 부분집합을 찾아 나간다. 제안된 방법을 세 데이터 셋에 적용한 결과 일정한 반복 회수 이내에 예측력이 향상된 부분집합을 얻을 수 있음을 볼 수 있다.
The error motion of a machine tool spindle directly affects the surface errors of machined parts. The error motions of the spindle are not desired errors in the three linear direction motions and two rotating motions. Those are usually due to the imperfect of bearings, stiffness of spindle, assembly errors, external force or unbalance of rotors. The error motions of the spindle have been needed to be decreased to desired goal of spindle's performance. The level of error motion is needed to be estimated during the design and assembly process of the spindle. In this paper, the estimation method for the five degree of freedom (5 D.O.F) error motions of the spindle is suggested. To estimate the error motions of the spindle, waviness of shaft and bearings, external force model was used as input data. And, the estimation models are considering geometric relationship and force equilibrium of the five degree of the freedom. To calculate error motions of the spindle, not only imperfection of the shaft, bearings, such as rolling element bearing, hydrostatic bearing, and aerostatic bearing, but also driving elements such as worm, pulley, and direct driving motor systems, were considered.
The head penetrations for control rod drive mechanism and instrumentation systems are installed at the reactor pressure vessel head of PWRs. Primary coolant water and the operating conditions of PWR plants can cause cracking of these nickel-based alloy through a process called primary water stress corrosion cracking (PWSCC). Inspection of the head penetrations to ensure the integrity of the head penetrations has been interested since reactor coolant leakages were found at U. S. reactors in 2000 and 2001. The complex geometry of the head penetrations and the very low echo amplitude from the fine, multiple flaws due to the nature of the see made it difficult to detect and size the flaws using conventional pulse-echo UT methods. Time-of-flight-diffraction technique, which utilizes the time difference between the flaw tips while pulse-echo does the flaw response amplitude from the flaw, has been selected for this inspection for it's best performance of the detection and sizing of the head penetration see flaws. This study defines the limits of the detectable and accurately sizable minimum flaw size which can be detected by the General TOFD and the Delta TOFD techniques for circumferentially and axially oriented flaws respectively. These results assures the reliability of the inspection techniques to detect and accurately size for various kind of flaws, and will also be utilized for the future development and qualifications of the TOFD techniques to enhance the detecting sensitivity and sizing accuracy of the flaws of the reactor head penetrations in nuclear power plants.
매년 수십억 건의 악성코드가 탐지되고 있지만, 이 중 신종 악성코드는 0.01%에 불과하다. 이러한 상황에 효과적인 악성코드 유형 분류 도구가 필요하지만, 선행 연구들은 복잡하고 방대한 양의 데이터 전처리 과정이 필요하여 많은 양의 악성코드를 신속하게 분석하기에는 한계가 있다. 이 문제를 해결하기 위해 본 논문은 유사성 해시를 기반으로 복잡한 데이터 전처리 과정 없이 악성코드의 유형을 분류하는 기법을 제안한다. 이 기법은 악성코드의 유사성 해시 정보를 바탕으로 XGBoost 모델을 학습하며, 평가를 위해 악성코드 분류 분야에 널리 활용되는 BIG-15 데이터셋을 사용했다. 평가 결과, 98.9%의 정확도로 악성코드를 분류했고, 3,432개의 일반 파일을 100% 정확도로 구분했다. 이 결과는 복잡한 전처리 과정 및 딥러닝 모델을 사용하는 대부분의 최신 연구들보다 우수하다. 따라서 제안한 접근법을 사용하면 보다 효율적인 악성코드 분류가 가능할 것으로 예상된다.
Kim, Taeyoon;Lee, Woo-Dong;Kwon, Yongju;Kim, Jongyeong;Kang, Byeonggug;Kwon, Soonchul
한국해양공학회지
/
제36권5호
/
pp.313-325
/
2022
Recently around the world, coastal erosion is paying attention as a social issue. Various constructions using low-crested and submerged structures are being performed to deal with the problems. In addition, a prediction study was researched using machine learning techniques to determine the wave attenuation characteristics of low crested structure to develop prediction matrix for wave attenuation coefficient prediction matrix consisting of weights and biases for ease access of engineers. In this study, a deep neural network model was constructed to predict the wave height transmission rate of low crested structures using Tensor flow, an open source platform. The neural network model shows a reliable prediction performance and is expected to be applied to a wide range of practical application in the field of coastal engineering. As a result of predicting the wave height transmission coefficient of the low crested structure depends on various input variable combinations, the combination of 5 condition showed relatively high accuracy with a small number of input variables defined as 0.961. In terms of the time cost of the model, it is considered that the method using the combination 5 conditions can be a good alternative. As a result of predicting the wave transmission rate of the trained deep neural network model, MSE was 1.3×10-3, I was 0.995, SI was 0.078, and I was 0.979, which have very good prediction accuracy. It is judged that the proposed model can be used as a design tool by engineers and scientists to predict the wave transmission coefficient behind the low crested structure.
Yuwei Zhao;Mesut Gor;Daria K. Voronkova;Hamed Gholizadeh Touchaei;Hossein Moayedi;Binh Nguyen Le
Steel and Composite Structures
/
제48권2호
/
pp.179-190
/
2023
Many recent attempts have sought accurate prediction of pile pullout resistance (Pul) using classical machine learning models. This study offers an improved methodology for this objective. Adaptive neuro-fuzzy inference system (ANFIS), as a popular predictor, is trained by a capable metaheuristic strategy, namely equilibrium optimizer (EO) to predict the Pul. The used data is collected from laboratory investigations in previous literature. First, two optimal configurations of EO-ANFIS are selected after sensitivity analysis. They are next evaluated and compared with classical ANFIS and two neural-based models using well-accepted accuracy indicators. The results of all five models were in good agreement with laboratory Puls (all correlations > 0.99). However, it was shown that both EO-ANFISs not only outperform neural benchmarks but also enjoy a higher accuracy compared to the classical version. Therefore, utilizing the EO is recommended for optimizing this predictive tool. Furthermore, a comparison between the selected EO-ANFISs, where one employs a larger population, revealed that the model with the population size of 75 is more efficient than 300. In this relation, root mean square error and the optimization time for the EO-ANFIS (75) were 19.6272 and 1715.8 seconds, respectively, while these values were 23.4038 and 9298.7 seconds for EO-ANFIS (300).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.