• 제목/요약/키워드: machine learning models

검색결과 1,404건 처리시간 0.029초

해양환경 예측정보를 활용한 인공지능 분석 기반의 최적 안전항로 연구 (Research on optimal safety ship-route based on artificial intelligence analysis using marine environment prediction)

  • 엄대용;이방희
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.100-103
    • /
    • 2023
  • 최근 스마트선박 개발에 발맞춰 정확하고 세밀한 실시간 해양환경 예측정보의 요구가 확대되고 선박에 직접 지원하기 위한 환경이 확보됨에 따라 최적항로 분야에서도 다양한 해양환경을 고려한 정보 생산 및 평가 연구가 필요하다. 스마트선박에서 해양환경의 위험도 및 에너지 소비의 불확실성을 줄이면서 최적항로를 산출할 수 있는 알고리즘은 2단계로 구분하여 개발하였다. 1단계는 해양환경정보들과 선박자동식별시스템(AIS)내에 선박의 위치·상태정보를 결합해 프로파일을 생성하였다. 2단계는 구성한 프로파일 결과를 이용하여 해양환경 에너지맵을 정의할 수 있는 모델을 개발하였고, 약 60만개의 데이터를 반영할 수 있도록 인공지능 머신러닝 기법 중 Random Forest를 적용하여 회귀식을 생성하였다. Random Forest 회귀 모델의 결정계수(R2)는 0.89 를 보였다. 생성한 모델에 2021년 6월 1일~3일의 해양환경 예측정보를 이용하여 Dijikstra 최단경로 알고리즘을 적용해 최적 안전항로를 산출하고 맵에 표출했다. Random Forest 회귀 모델로 산출된 항로는 유선적이고 해양환경 예측정보의 상태를 감안하며 항로를 도출하는 결과를 보였다. 본 연구의 실시간 해양환경 예측정보 기반의 항로 산출 개념은 선박의 이동 경향성을 반영한 현실적이면서 안전한 항로 산출이 가능하고, 향후 경제성, 안전성, 친환경성 평가 모델로 범위로 확대할 수 있을 것으로 기대된다.

  • PDF

머신러닝을 이용한 기후변화에 따른 천궁 생리 활성 성분 예측 모델 연구 (A Study on the Prediction Model for Bioactive Components of Cnidium officinale Makino according to Climate Change using Machine Learning)

  • 이현조;구현정;이경철;주원균;채철주
    • 스마트미디어저널
    • /
    • 제12권10호
    • /
    • pp.93-101
    • /
    • 2023
  • 최근 기온 상승, 가뭄, 홍수 등 기후변화가 세계적인 문제로 대두되고 있으며, 농업분야에서는 작물의 특성과 생산성에 많은 영향을 미칠 것으로 예측하고 있다. 천궁은 전통적으로 사용되는 한약재뿐만 아니라 건강기능식품, 천연물의약품, 생활소재 등 다양한 산업적 원료로 활용되고 있으나, 연작장해, 기후변화 등 위협 요인으로 인한 생산성이 감소되고 있다. 그러므로 본 논문에서는 기후변화에 취약한 대표 약용 작물인 천궁의 기후변화 시나리오에 따른 생리 활성 성분 지표를 예측할 수 있는 모델을 제안한다. 먼저 기상 정보와 생리 반응, 생리 활성 성분 정보의 수집 데이터 불균형 문제를 해결하기 위해 CTGAN 알고리즘을 이용하여 데이터를 증강하였다. 증강 데이터 품질 측정을 위해 Column Shape, Column Pair Trends를 이용하였으며 평균 88% Overall Quality를 달성하였다. 증강 데이터를 이용하여 지상부와 지하부로 나누어 페놀과 플라보노이드 함량을 예측하기 위해 5가지 모델 RF, SVR, XGBoost, AdaBoost, LightBGM을 이용하여 평가하였다. 모델 성능 평가 결과 XGBoost 모델이 천궁 생리 활성 성분 예측에 가장 우수한 성능을 보였으며, SVR 모델 대비 약 2배 정도의 향상된 정확도를 확인할 수 있었다.

경제지표를 활용한 다중선형회귀 모델 기반 국제 휘발유 가격 예측 (A study of Predicting International Gasoline Prices based on Multiple Linear Regression with Economic Indicators)

  • 한명은;김지연;이현희;김세인;박민서
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.159-164
    • /
    • 2024
  • 국내 석유 시장은 국제 석유 가격의 변동에 매우 민감하기 때문에 그 변동성에 대한 파악과 대처가 중요하다. 특히, 높은 소비량을 보이는 휘발유의 가격이 어떠한 요인에 인해 변화하는지 명확하게 파악하는 것이 필요하다. 국제 휘발유 가격은 휘발유 수급, 지정학적 사건, 미국 달러화 가치 변동 등 글로벌 요인에 영향을 받는다. 그러나 기존의 연구들은 휘발유의 수급에만 초점에 맞추어 진행하였다는 한계가 존재한다. 본 연구에서는 다양한 머신러닝 기반의 회귀 모델을 활용하여 거시적 경제지표와 국제 휘발유 가격 간의 인과관계를 탐색한다. 첫째, 다양한 세계 경제지표 데이터를 수집한다. 둘째, 데이터 전처리를 진행한다. 셋째, 다중선형회귀, Ridge 회귀, Lasso(Least Absolute Shrinkage and Selection Operator) 회귀 모델을 활용하여 모델링한다. 실험 결과, 테스트 데이터 셋에서 다중선형회귀 모델이 가장 높은 정확도(97.3%)를 보였다. 우리는 국제 휘발유 가격의 예측은 국내 경제 안정성과 에너지 정책 결정에 도움이 될 수 있을 것으로 기대한다.

딥러닝 알고리즘을 활용한 천식 환자 발생 예측에 대한 연구 (A Study on Asthmatic Occurrence Using Deep Learning Algorithm)

  • 성태응
    • 한국콘텐츠학회논문지
    • /
    • 제20권7호
    • /
    • pp.674-682
    • /
    • 2020
  • 최근 산업화 및 인구과밀화로 인해 대기오염에 대한 문제가 세계적 관심사로 대두되고 있다. 대기 오염은 인간의 건강에 다양한 악영향을 초래할 수 있는데, 그 중 본 연구에서 관심을 둔 천식과 같은 호흡계 질환은 직접적 영향을 받을 수 있다. 기존의 연구에서는 임상 데이터를 활용하여 상대적으로 적은 표본을 기반으로 천식과 같은 질환에 대기 오염 인자가 어떠한 영향을 미치는지를 파악하였다. 이는 수집 표본 별 일관성이 없는 결과를 초래할 소지가 다분하며, 의료계 종사자 이외에는 연구의 시도가 어렵다는 점에서 큰 한계를 가지고 있다. 본 연구에서는 정부에서 공개하는 대기 환경 데이터와 천식 발병 빈도 수에 대한 데이터를 기반으로, 실제 천식 발병 빈도를 예측하는 것에 연구의 주안점을 두었다. 본 연구는 시차를 적용한 피어슨 상관계수를 통해 각 대기오염 인자가 천식 발병에 어느 정도의 시차를 가지고 유의한 영향을 주는지를 검증하였다. 검증결과를 기반으로 구축된 학습데이터는 딥러닝 알고리즘에 활용되며, 천식 발병 빈도의 예측에 최적화 된 모델을 설계하였다. 모델의 평균 대비 오차율은 약 11.86%로 타 머신러닝 기반의 알고리즘 대비 우수한 성능을 나타냄을 확인하였다. 제안한 모델은 국가 보험 체계 및 보건 예산 관리에서의 효율화 및 병원에서의 의료 인력 배치 및 수급에의 효율성 또한 제공할 수 있다. 또한 만성 천식 질환자에 대한 대기 환경별 발병 위험에 대한 조기 경보를 통해 국민 건강 증진에 기여할 수 있다.

이산화 전처리 방식 및 컨볼루션 신경망을 활용한 네트워크 침입 탐지에 대한 연구 (A Research on Network Intrusion Detection based on Discrete Preprocessing Method and Convolution Neural Network)

  • 유지훈;민병준;김상수;신동일;신동규
    • 인터넷정보학회논문지
    • /
    • 제22권2호
    • /
    • pp.29-39
    • /
    • 2021
  • 새롭게 발생되는 사이버 공격으로 인해 개인, 민간 및 기업의 피해가 증가함에 따라, 이에 기반이 되는 네트워크 보안 문제는 컴퓨터 시스템의 주요 문제로 부각되었다. 이에 기존에 사용되는 네트워크 침입 탐지 시스템(Network Intrusion Detection System: NIDS)에서 발생되는 한계점을 개선하고자 기계 학습과 딥러닝을 활용한 연구 이뤄지고 있다. 이에 본 연구에서는 CNN(Convolution Neural Network) 알고리즘을 이용한 NIDS 모델 연구를 진행한다. 이미지 분류 기반의 CNN 알고리즘 학습을 위해 기존 사용되는 전처리 단계에서 연속성 변수 이산화(Discretization of Continuous) 알고리즘을 추가하여 예측 변수에 대해 선형 관계로 표현하여 해석에 용이한 데이터로 변환 후, 정사각형 행렬(Square Matrix) 구조에 매칭된 픽셀(Pixel) 이미지 구조를 모델에 학습한다. 모델의 성능 평가를 위해 네트워크 패킷 데이터인 NSL-KDD를 사용하였으며, 정확도(Accuracy), 정밀도(Precision), 재현율(Recall) 및 조화평균(F1-score)을 성능지표로 사용하였다. 실험 결과 제안된 모델에서 85%의 정확도로 가장 높은 성능을 보였으며, 학습 표본이 적은 R2L 클래스의 조화평균이 71% 성능으로 다른 모델에 비해서 매우 좋은 성능을 보였다.

설명 가능한 인공지능과 CNN을 활용한 암호화폐 가격 등락 예측모형 (The Prediction of Cryptocurrency Prices Using eXplainable Artificial Intelligence based on Deep Learning)

  • 홍태호;원종관;김은미;김민수
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.129-148
    • /
    • 2023
  • 블록체인 기술이 적용되어 있는 암호화폐는 높은 가격 변동성을 가지며 투자자 및 일반 대중으로부터 큰 관심을 받아왔다. 이러한 관심을 바탕으로 암호화폐를 비롯한 투자상품의 미래가치를 예측하기 위한 연구가 이루어지고 있으나 예측모형에 대한 설명력 및 해석 가능성이 낮아 실무에서 활용하기 어렵다는 비판을 받아왔다. 본 연구에서는 암호화폐 가격 예측모형의 성과를 향상시키기 위해 금융투자상품의 가치평가에 활용되는 기술적 지표들과 함께 투자자의 사회적 관심도를 반영할 수 있는 구글 키워드 검색량 데이터를 사용하고 설명 가능한 인공지능을 적용하여 모형에 대한 해석을 제공하고자 한다. 최근 금융 시계열 분야에서 예측성과의 우수성을 인정받고 있는 LSTM(Long Short Term Memory)과 CNN(Convolutional Neural Networks)을 활용하고, 'bitcoin'을 검색어로 하는 구글 검색량 데이터를 적용해 일주일 후의 가격 등락 예측모형을 구축하였다. LSTM과 CNN을 활용해 구축한 모형들이 높은 예측성능을 보였으며 구글 검색량을 반영한 모형에서 더 높은 예측성과를 확인할 수 있었다. 딥러닝 모형의 해석 가능성 및 설명력을 위해 XAI의 SHAP 기법을 적용한 결과, 구글 검색량과 함께 과매수, 과매도 정도를 파악할 수 있는 지표들이 모형의 의사결정에 가장 큰 영향들을 미치고 있음을 파악할 수 있었다. 본 연구는 암호화폐 가격 등락 예측에 있어 전통적으로 시계열 예측에 우수한 성과를 인정받고 있는 LSTM뿐만 아니라 이미지 분류에서 높은 예측성과를 보이는 딥러닝 기법인 CNN 또한 우수한 예측성능을 보일 수 있음을 확인하였으며, XAI를 통해 예측모형에 대한 해석을 제공하고, 대중의 심리를 반영하는 정보 중 하나인 구글 검색량을 활용해 예측성과를 향상시킬 수 있다는 것을 확인했다는 점에서 의의가 있다.

대형 사전훈련 모델의 파인튜닝을 통한 강건한 한국어 음성인식 모델 구축 (Building robust Korean speech recognition model by fine-tuning large pretrained model)

  • 오창한;김청빈;박기영
    • 말소리와 음성과학
    • /
    • 제15권3호
    • /
    • pp.75-82
    • /
    • 2023
  • 자동 음성 인식(automatic speech recognition, ASR)은 딥러닝 기반 접근 방식으로 혁신되었으며, 그중에서도 자기 지도 학습 방법이 특히 효과적일 수 있음이 입증되고 있다. 본 연구에서는 다국어 ASR 시스템인 OpenAI의 Whisper 모델의 한국어 성능을 향상시키는 것을 목표하여 다국어 음성인식 시스템에서의 비주류 언어의 성능 문제를 개선하고자 한다. Whisper는 대용량 웹 음성 데이터 코퍼스(약 68만 시간)에서 사전 학습되었으며 주요 언어에 대한 강력한 인식 성능을 입증했다. 그러나 훈련 중 주요 언어가 아닌 한국어와 같은 언어를 인식하는 데 어려움을 겪을 수 있다. 우리는 약 1,000시간의 한국어 음성으로 구성된 추가 데이터 세트로 Whisper 모델을 파인튜닝하여 이 문제를 해결한다. 또한 동일한 데이터 세트를 사용하여 전체 훈련된 Transformer 모델을 베이스 라인으로 선정하여 성능을 비교한다. 실험 결과를 통해 Whisper 모델을 파인튜닝하면 문자 오류율(character error rate, CER) 측면에서 한국어 음성 인식 기능이 크게 향상되었음을 확인할 수 있다. 특히 모델 크기가 증가함에 따라 성능이 향상되는 경향을 포착하였다. 그러나 Whisper 모델의 영어 성능은 파인튜닝 후 성능이 저하됨을 확인하여 강력한 다국어 모델을 개발하기 위한 추가 연구의 필요성을 확인할 수 있었다. 추가적으로 우리의 연구는 한국어 음성인식 애플리케이션에 파인튜닝된 Whisper 모델을 활용할 수 있는 가능성을 확인할 수 있다. 향후 연구는 실시간 추론을 위한 다국어 인식과 최적화에 초점을 맞춰 실용적 연구를 이어갈 수 있겠다.

딥러닝 기반 온라인 리뷰를 활용한 추천 모델 개발: 레스토랑 산업을 중심으로 (Developing a deep learning-based recommendation model using online reviews for predicting consumer preferences: Evidence from the restaurant industry)

  • 김동언;장동수;엄금철;이가은
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.31-49
    • /
    • 2023
  • 레스토랑 산업의 성장과 함께 레스토랑 오프라인 매장 수는 점차 증가하지만, 소비자는 자신의 선호도에 적합한 레스토랑을 선택하는 데 어려움을 경험하고 있다. 따라서 소비자의 선호도에 맞는 레스토랑을 추천하는 개인화된 추천 서비스의 필요성이 대두하고 있다. 기존 연구에서는 설문조사 및 평점 정보를 활용하여 소비자 선호도를 조사했으나, 이는 소비자의 구체적인 선호도를 효과적으로 반영하는데 어려움이 존재한다. 이러한 배경하에 온라인 리뷰는 방문 동기, 음식 평가 등 레스토랑에 대한 소비자 구체적인 선호도를 효과적으로 반영하기 때문에 필수적인 정보이다. 한편, 일부 연구에서는 리뷰 텍스트에 전통적인 기계학습 기법을 적용하여 소비자의 선호도를 측정하였다. 그러나 이러한 접근 방식은 주변 단어나 맥락을 고려하지 못하는 한계점이 존재한다. 따라서 본 연구는 딥러닝을 효과적으로 활용하여 온라인 리뷰에서 소비자의 선호도를 정교하게 추출하는 리뷰 텍스트 기반 레스토랑 추천 모델을 제안한다. 본 연구에서 제안된 모델은 추출된 높은 수준의 의미론적 표현과 소비자-레스토랑 상호작용을 연결하여 소비자의 선호도를 정확하고 효과적으로 예측한다. 실험 결과에 따르면 본 연구에서 제안된 추천 모델은 기존 연구에서 제안된 여러 모델에 비해 우수한 추천 성능을 보이는 것으로 나타났다.

주식 투자자의 의사결정 지원을 위한 데이터마이닝 도구 (Data Mining Tool for Stock Investors' Decision Support)

  • 김성동
    • 한국콘텐츠학회논문지
    • /
    • 제12권2호
    • /
    • pp.472-482
    • /
    • 2012
  • 주식시장에는 많은 투자자들이 참여하고 있으며 점점 더 많은 사람이 주식투자에 관심을 가지고 있다. 주식시장에서 위험을 회피하고 수익을 얻기 위해서는 다양한 정보를 바탕으로 정확한 의사결정을 해야한다. 즉 수익을 얻을 수 있는 종목 선택, 적절한 매수-매도 가격의 결정, 그리고 적절한 보유기간 등을 결정해야 한다. 본 논문에서는 개인 주식 투자자의 의사결정 지원을 위한 데이터마이닝 도구를 제안한다. 즉, 개인 투자자가 직접 기계학습 방법을 적용하여 주가예측 모델을 생성할 수 있게 하고, 적절한 매수-매도 가격과 보유기간 등을 결정하는 것을 도와주는 도구를 제안한다. 제안하는 도구는 과거 데이터를 이용하여 투자자 자신의 성향에 맞는 투자에서의 의사결정을 할 수 있도록 지원하는 도구로서 주가데이터 관리, 기계학습 적용을 통한 주가예측 모델 생성, 투자 시뮬레이션 등의 기능을 제공한다. 사용자는 스스로 주가에 영향을 미칠 수 있다고 판단하는 기술적 지표를 선정하고 이를 이용하여 주가예측 모델을 만들고 테스트 할 수 있으며, 적절한 예측모델을 적용하여 시뮬레이션을 수행해 봄으로써 실제로 어느 정도 수익을 얻을 수 있는지 평가하고 적절한 매매 정책을 수립할 수 있다. 제안하는 도구를 이용하여 주식 투자자는 기존의 감정적 판단에 의한 투자가 아닌 객관적 데이터에 의해 검증을 거친 주가예측 모델과 매매정책에 따라 주식투자를 할 수 있어 이전 보다 나은 수익을 기대할 수 있다.

케이프선 시장 운임의 결정요인 및 운임예측 모형 분석 (An Analysis on Determinants of the Capesize Freight Rate and Forecasting Models)

  • 임상섭;윤희성
    • 한국항해항만학회지
    • /
    • 제42권6호
    • /
    • pp.539-545
    • /
    • 2018
  • 운임시장의 심한 변동성과 시계열 데이터의 불안정성으로 해운시황 예측에 대한 연구가 큰 성과를 내지 못하고 있지만 최근 대표적인 비선형 모델인 기계학습모델을 적용한 연구들이 활발히 진행되고 있다. 대부분의 기존 연구가 계량모델의 설계단계에서 입력변수에 해당하는 요인들을 기존 문헌연구와 연구자의 직관에 의존하여 선정했기 때문에 요인선정에 대한 체계적인 연구가 필요하다. 본 연구에서는 케이프선 운임을 대상으로 단계적 회귀모형과 랜덤포레스트모델을 이용하여 중요 영향요인을 분석하였다. 해운시장에서 비교적 단순한 수급구조를 가져 요인파악이 용이한 케이프선 운임을 대상으로 하였으며 총 16개의 수급요인들을 사전 추출하였다. 요인간의 상호관련성을 파악하여 단계적 회귀는 8개 요인, 랜덤포레스트는 10개 요인을 분석대상으로 선정하였으며 선정된 변수를 입력변수로 하여 예측한 결과를 비교하였다. 랜덤포레스트의 예측성능이 아주 우수하였는데 수요요인이 주로 선정된 단계적 회귀분석과는 달리 공급요인이 비중 있게 선정되었기 때문인 것으로 판단된다. 본 연구는 운임예측 연구에 있어 운임결정요인에 대한 과학적인 근거를 마련하였으며 이를 위해 기계학습 기반의 모델을 활용하였다는데 연구적 의의가 있다. 또한 시장정보의 분석에 있어 실무자들이 어떤 변수에 중점을 두어야 하는지에 대해 합리적 근거를 제시한 측면에서 해운기업의 의사결정에 실질적 도움이 될 것으로 기대된다.