• Title/Summary/Keyword: machine learning in concrete

Search Result 128, Processing Time 0.024 seconds

Development of an integrated machine learning model for rheological behaviours and compressive strength prediction of self-compacting concrete incorporating environmental-friendly materials

  • Pouryan Hadi;KhodaBandehLou Ashkan;Hamidi Peyman;Ashrafzadeh Fedra
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.181-195
    • /
    • 2023
  • To predict the rheological behaviours along with the compressive strength of self-compacting concrete that incorporates environmentally friendly ingredients as cement substitutes, a comparative evaluation of machine learning methods is conducted. To model four parameters, slump flow diameter, L-box ratio, V-funnel time, as well as compressive strength at 28 days-a complete mix design dataset from available pieces of literature is gathered and used to construct the suggested machine learning standards, SVM, MARS, and Mp5-MT. Six input variables-the amount of binder, the percentage of SCMs, the proportion of water to the binder, the amount of fine and coarse aggregates, and the amount of superplasticizer are grouped in a particular pattern. For optimizing the hyper-parameters of the MARS model with the lowest possible prediction error, a gravitational search algorithm (GSA) is required. In terms of the correlation coefficient for modelling slump flow diameter, L-box ratio, V-funnel duration, and compressive strength, the prediction results showed that MARS combined with GSA could improve the accuracy of the solo MARS model with 1.35%, 11.1%, 2.3%, as well as 1.07%. By contrast, Mp5-MT often demonstrates greater identification capability and more accurate prediction in comparison to MARS-GSA, and it may be regarded as an efficient approach to forecasting the rheological behaviors and compressive strength of SCC in infrastructure practice.

A generalized explainable approach to predict the hardened properties of self-compacting geopolymer concrete using machine learning techniques

  • Endow Ayar Mazumder;Sanjog Chhetri Sapkota;Sourav Das;Prasenjit Saha;Pijush Samui
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.279-296
    • /
    • 2024
  • In this study, ensemble machine learning (ML) models are employed to estimate the hardened properties of Self-Compacting Geopolymer Concrete (SCGC). The input variables affecting model development include the content of the SCGC such as the binder material, the age of the specimen, and the ratio of alkaline solution. On the other hand, the output parameters examined includes compressive strength, flexural strength, and split tensile strength. The ensemble machine learning models are trained and validated using a database comprising 396 records compiled from 132 unique mix trials performed in the laboratory. Diverse machine learning techniques, notably K-nearest neighbours (KNN), Random Forest, and Extreme Gradient Boosting (XGBoost), have been employed to construct the models coupled with Bayesian optimisation (BO) for the purpose of hyperparameter tuning. Furthermore, the application of nested cross-validation has been employed in order to mitigate the risk of overfitting. The findings of this study reveal that the BO-XGBoost hybrid model confirms better predictive accuracy in comparison to other models. The R2 values for compressive strength, flexural strength, and split tensile strength are 0.9974, 0.9978, and 0.9937, respectively. Additionally, the BO-XGBoost hybrid model exhibits the lowest RMSE values of 0.8712, 0.0773, and 0.0799 for compressive strength, flexural strength, and split tensile strength, respectively. Furthermore, a SHAP dependency analysis was conducted to ascertain the significance of each parameter. It is observed from this study that GGBS, Flyash, and the age of specimens exhibit a substantial level of influence when predicting the strengths of geopolymers.

Comparison Analysis of Machine Learning for Concrete Crack Depths Prediction Using Thermal Image and Environmental Parameters (열화상 이미지와 환경변수를 이용한 콘크리트 균열 깊이 예측 머신 러닝 분석)

  • Kim, Jihyung;Jang, Arum;Park, Min Jae;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.99-110
    • /
    • 2021
  • This study presents the estimation of crack depth by analyzing temperatures extracted from thermal images and environmental parameters such as air temperature, air humidity, illumination. The statistics of all acquired features and the correlation coefficient among thermal images and environmental parameters are presented. The concrete crack depths were predicted by four different machine learning models: Multi-Layer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB), and AdaBoost (AB). The machine learning algorithms are validated by the coefficient of determination, accuracy, and Mean Absolute Percentage Error (MAPE). The AB model had a great performance among the four models due to the non-linearity of features and weak learner aggregation with weights on misclassified data. The maximum depth 11 of the base estimator in the AB model is efficient with high performance with 97.6% of accuracy and 0.07% of MAPE. Feature importances, permutation importance, and partial dependence are analyzed in the AB model. The results show that the marginal effect of air humidity, crack depth, and crack temperature in order is higher than that of the others.

Thermal post-buckling measurement of the advanced nanocomposites reinforced concrete systems via both mathematical modeling and machine learning algorithm

  • Minggui Zhou;Gongxing Yan;Danping Hu;Haitham A. Mahmoud
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.623-638
    • /
    • 2024
  • This study investigates the thermal post-buckling behavior of concrete eccentric annular sector plates reinforced with graphene oxide powders (GOPs). Employing the minimum total potential energy principle, the plates' stability and response under thermal loads are analyzed. The Haber-Schaim foundation model is utilized to account for the support conditions, while the transform differential quadrature method (TDQM) is applied to solve the governing differential equations efficiently. The integration of GOPs significantly enhances the mechanical properties and stability of the plates, making them suitable for advanced engineering applications. Numerical results demonstrate the critical thermal loads and post-buckling paths, providing valuable insights into the design and optimization of such reinforced structures. This study presents a machine learning algorithm designed to predict complex engineering phenomena using datasets derived from presented mathematical modeling. By leveraging advanced data analytics and machine learning techniques, the algorithm effectively captures and learns intricate patterns from the mathematical models, providing accurate and efficient predictions. The methodology involves generating comprehensive datasets from mathematical simulations, which are then used to train the machine learning model. The trained model is capable of predicting various engineering outcomes, such as stress, strain, and thermal responses, with high precision. This approach significantly reduces the computational time and resources required for traditional simulations, enabling rapid and reliable analysis. This comprehensive approach offers a robust framework for predicting the thermal post-buckling behavior of reinforced concrete plates, contributing to the development of resilient and efficient structural components in civil engineering.

Empirical evaluations for predicting the damage of FRC wall subjected to close-in explosions

  • Duc-Kien Thai;Thai-Hoan Pham;Duy-Liem Nguyen;Tran Minh Tu;Phan Van Tien
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.65-79
    • /
    • 2023
  • This paper presents a development of empirical evaluations, which can be used to evaluate the damage of fiber-reinforced concrete composites (FRC) wall subjected to close-in blast loads. For this development, a combined application of numerical simulation and machine learning approaches are employed. First, finite element modeling of FRC wall under blast loading is developed and verified using experimental data. Numerical analyses are then carried out to investigate the dynamic behavior of the FRC wall under blast loading. In addition, a data set of 384 samples on the damage of FRC wall due to blast loads is then produced in order to develop machine learning models. Second, three robust machine learning models of Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) are employed to propose empirical evaluations for predicting the damage of FRC wall. The proposed empirical evaluations are very useful for practical evaluation and design of FRC wall subjected to blast loads.

Machine learning techniques for reinforced concrete's tensile strength assessment under different wetting and drying cycles

  • Ibrahim Albaijan;Danial Fakhri;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Khaled Mohamed Elhadi;Shima Rashidi
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.337-348
    • /
    • 2023
  • Successive wetting and drying cycles of concrete due to weather changes can endanger the safety of engineering structures over time. Considering wetting and drying cycles in concrete tests can lead to a more correct and reliable design of engineering structures. This study aims to provide a model that can be used to estimate the resistance properties of concrete under different wetting and drying cycles. Complex sample preparation methods, the necessity for highly accurate and sensitive instruments, early sample failure, and brittle samples all contribute to the difficulty of measuring the strength of concrete in the laboratory. To address these problems, in this study, the potential ability of six machine learning techniques, including ANN, SVM, RF, KNN, XGBoost, and NB, to predict the concrete's tensile strength was investigated by applying 240 datasets obtained using the Brazilian test (80% for training and 20% for test). In conducting the test, the effect of additives such as glass and polypropylene, as well as the effect of wetting and drying cycles on the tensile strength of concrete, was investigated. Finally, the statistical analysis results revealed that the XGBoost model was the most robust one with R2 = 0.9155, mean absolute error (MAE) = 0.1080 Mpa, and variance accounted for (VAF) = 91.54% to predict the concrete tensile strength. This work's significance is that it allows civil engineers to accurately estimate the tensile strength of different types of concrete. In this way, the high time and cost required for the laboratory tests can be eliminated.

Comparison of machine learning techniques to predict compressive strength of concrete

  • Dutta, Susom;Samui, Pijush;Kim, Dookie
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.463-470
    • /
    • 2018
  • In the present study, soft computing i.e., machine learning techniques and regression models algorithms have earned much importance for the prediction of the various parameters in different fields of science and engineering. This paper depicts that how regression models can be implemented for the prediction of compressive strength of concrete. Three models are taken into consideration for this; they are Gaussian Process for Regression (GPR), Multi Adaptive Regression Spline (MARS) and Minimax Probability Machine Regression (MPMR). Contents of cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate and age in days have been taken as inputs and compressive strength as output for GPR, MARS and MPMR models. A comparatively large set of data including 1030 normalized previously published results which were obtained from experiments were utilized. Here, a comparison is made between the results obtained from all the above mentioned models and the model which provides the best fit is established. The experimental results manifest that proposed models are robust for determination of compressive strength of concrete.

Coupling numerical modeling and machine-learning for back analysis of cantilever retaining wall failure

  • Amichai Mitelman;Gili Lifshitz Sherzer
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.307-314
    • /
    • 2023
  • In this paper we back-analyze a failure event of a 9 m high concrete cantilever wall subjected to earth loading. Granular soil was deposited into the space between the wall and a nearby rock slope. The wall segments were not designed to carry lateral earth loading and collapsed due to excessive bending. As many geotechnical programs rely on the Mohr-Coulomb (MC) criterion for elastoplastic analysis, it is useful to apply this failure criterion to the concrete material. Accordingly, the back-analysis is aimed to search for the suitable MC parameters of the concrete. For this study, we propose a methodology for accelerating the back-analysis task by automating the numerical modeling procedure and applying a machine-learning (ML) analysis on FE model results. Through this analysis it is found that the residual cohesion and friction angle have a highly significant impact on model results. Compared to traditional back-analysis studies where good agreement between model and reality are deemed successful based on a limited number of models, the current ML analysis demonstrate that a range of possible combinations of parameters can yield similar results. The proposed methodology can be modified for similar calibration and back-analysis tasks.

Predicting the maximum lateral load of reinforced concrete columns with traditional machine learning, deep learning, and structural analysis software

  • Pelin Canbay;Sila Avgin;Mehmet M. Kose
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.285-299
    • /
    • 2024
  • Recently, many engineering computations have realized their digital transformation to Machine Learning (ML)-based systems. Predicting the behavior of a structure, which is mainly computed with structural analysis software, is an essential step before construction for efficient structural analysis. Especially in the seismic-based design procedure of the structures, predicting the lateral load capacity of reinforced concrete (RC) columns is a vital factor. In this study, a novel ML-based model is proposed to predict the maximum lateral load capacity of RC columns under varying axial loads or cyclic loadings. The proposed model is generated with a Deep Neural Network (DNN) and compared with traditional ML techniques as well as a popular commercial structural analysis software. In the design and test phases of the proposed model, 319 columns with rectangular and square cross-sections are incorporated. In this study, 33 parameters are used to predict the maximum lateral load capacity of each RC column. While some traditional ML techniques perform better prediction than the compared commercial software, the proposed DNN model provides the best prediction results within the analysis. The experimental results reveal the fact that the performance of the proposed DNN model can definitely be used for other engineering purposes as well.

Prediction of concrete compressive strength using non-destructive test results

  • Erdal, Hamit;Erdal, Mursel;Simsek, Osman;Erdal, Halil Ibrahim
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.407-417
    • /
    • 2018
  • Concrete which is a composite material is one of the most important construction materials. Compressive strength is a commonly used parameter for the assessment of concrete quality. Accurate prediction of concrete compressive strength is an important issue. In this study, we utilized an experimental procedure for the assessment of concrete quality. Firstly, the concrete mix was prepared according to C 20 type concrete, and slump of fresh concrete was about 20 cm. After the placement of fresh concrete to formworks, compaction was achieved using a vibrating screed. After 28 day period, a total of 100 core samples having 75 mm diameter were extracted. On the core samples pulse velocity determination tests and compressive strength tests were performed. Besides, Windsor probe penetration tests and Schmidt hammer tests were also performed. After setting up the data set, twelve artificial intelligence (AI) models compared for predicting the concrete compressive strength. These models can be divided into three categories (i) Functions (i.e., Linear Regression, Simple Linear Regression, Multilayer Perceptron, Support Vector Regression), (ii) Lazy-Learning Algorithms (i.e., IBk Linear NN Search, KStar, Locally Weighted Learning) (iii) Tree-Based Learning Algorithms (i.e., Decision Stump, Model Trees Regression, Random Forest, Random Tree, Reduced Error Pruning Tree). Four evaluation processes, four validation implements (i.e., 10-fold cross validation, 5-fold cross validation, 10% split sample validation & 20% split sample validation) are used to examine the performance of predictive models. This study shows that machine learning regression techniques are promising tools for predicting compressive strength of concrete.