• Title/Summary/Keyword: machine learning applications

Search Result 538, Processing Time 0.031 seconds

Coreference Resolution for Korean Using Random Forests (랜덤 포레스트를 이용한 한국어 상호참조 해결)

  • Jeong, Seok-Won;Choi, MaengSik;Kim, HarkSoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.535-540
    • /
    • 2016
  • Coreference resolution is to identify mentions in documents and is to group co-referred mentions in the documents. It is an essential step for natural language processing applications such as information extraction, event tracking, and question-answering. Recently, various coreference resolution models based on ML (machine learning) have been proposed, As well-known, these ML-based models need large training data that are manually annotated with coreferred mention tags. Unfortunately, we cannot find usable open data for learning ML-based models in Korean. Therefore, we propose an efficient coreference resolution model that needs less training data than other ML-based models. The proposed model identifies co-referred mentions using random forests based on sieve-guided features. In the experiments with baseball news articles, the proposed model showed a better CoNLL F1-score of 0.6678 than other ML-based models.

Comparison of Artificial Neural Network Model Capability for Runoff Estimation about Activation Functions (활성화 함수에 따른 유출량 산정 인공신경망 모형의 성능 비교)

  • Kim, Maga;Choi, Jin-Yong;Bang, Jehong;Yoon, Pureun;Kim, Kwihoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.103-116
    • /
    • 2021
  • Analysis of runoff is substantial for effective water management in the watershed. Runoff occurs by reaction of a watershed to the rainfall and has non-linearity and uncertainty due to the complex relation of weather and watershed factors. ANN (Artificial Neural Network), which learns from the data, is one of the machine learning technique known as a proper model to interpret non-linear data. The performance of ANN is affected by the ANN's structure, the number of hidden layer nodes, learning rate, and activation function. Especially, the activation function has a role to deliver the information entered and decides the way of making output. Therefore, It is important to apply appropriate activation functions according to the problem to solve. In this paper, ANN models were constructed to estimate runoff with different activation functions and each model was compared and evaluated. Sigmoid, Hyperbolic tangent, ReLU (Rectified Linear Unit), ELU (Exponential Linear Unit) functions were applied to the hidden layer, and Identity, ReLU, Softplus functions applied to the output layer. The statistical parameters including coefficient of determination, NSE (Nash and Sutcliffe Efficiency), NSEln (modified NSE), and PBIAS (Percent BIAS) were utilized to evaluate the ANN models. From the result, applications of Hyperbolic tangent function and ELU function to the hidden layer and Identity function to the output layer show competent performance rather than other functions which demonstrated the function selection in the ANN structure can affect the performance of ANN.

Indian Research on Artificial Neural Networks: A Bibliometric Assessment of Publications Output during 1999-2018

  • Gupta, B.M.;Dhawan, S.M.
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.10 no.4
    • /
    • pp.29-46
    • /
    • 2020
  • The paper describes the quantitative and qualitative dimensions of artificial neural networks (ANN) in India in the global context. The study is based on research publications data (8260) as covered in the Scopus database during 1999-2018. ANN research in India registered 24.52% growth, averaged 11.95 citations per paper, and contributed 9.77% share to the global ANN research. ANN research is skewed as the top 10 countries account for 75.15% of global output. India ranks as the third most productive country in the world. The distribution of research by type of ANN networks reveals that Feed Forward Neural Network type accounted for the highest share (10.18% share), followed by Adaptive Weight Neural Network (5.38% share), Feed Backward Neural Network (2.54% share), etc. ANN research applications across subjects were the largest in medical science and environmental science (11.82% and 10.84% share respectively), followed by materials science, energy, chemical engineering and water resources (from 6.36% to 9.12%), etc. The Indian Institute of Technology, Kharagpur and the Indian Institute of Technology, Roorkee lead the country as the most productive organizations (with 289 and 264 papers). Besides, the Indian Institute of Technology, Kanpur (33.04 and 2.76) and Indian Institute of Technology, Madras (24.26 and 2.03) lead the country as the most impactful organizations in terms of citation per paper and relative citation index. P. Samui and T.N. Singh have been the most productive authors and G.P.S.Raghava (86.21 and 7.21) and K.P. Sudheer (84.88 and 7.1) have been the most impactful authors. Neurocomputing, International Journal of Applied Engineering Research and Applied Soft Computing topped the list of most productive journals.

Prediction of spatio-temporal AQI data

  • KyeongEun Kim;MiRu Ma;KyeongWon Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.119-133
    • /
    • 2023
  • With the rapid growth of the economy and fossil fuel consumption, the concentration of air pollutants has increased significantly and the air pollution problem is no longer limited to small areas. We conduct statistical analysis with the actual data related to air quality that covers the entire of South Korea using R and Python. Some factors such as SO2, CO, O3, NO2, PM10, precipitation, wind speed, wind direction, vapor pressure, local pressure, sea level pressure, temperature, humidity, and others are used as covariates. The main goal of this paper is to predict air quality index (AQI) spatio-temporal data. The observations of spatio-temporal big datasets like AQI data are correlated both spatially and temporally, and computation of the prediction or forecasting with dependence structure is often infeasible. As such, the likelihood function based on the spatio-temporal model may be complicated and some special modelings are useful for statistically reliable predictions. In this paper, we propose several methods for this big spatio-temporal AQI data. First, random effects with spatio-temporal basis functions model, a classical statistical analysis, is proposed. Next, neural networks model, a deep learning method based on artificial neural networks, is applied. Finally, random forest model, a machine learning method that is closer to computational science, will be introduced. Then we compare the forecasting performance of each other in terms of predictive diagnostics. As a result of the analysis, all three methods predicted the normal level of PM2.5 well, but the performance seems to be poor at the extreme value.

IoT botnet attack detection using deep autoencoder and artificial neural networks

  • Deris Stiawan;Susanto ;Abdi Bimantara;Mohd Yazid Idris;Rahmat Budiarto
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1310-1338
    • /
    • 2023
  • As Internet of Things (IoT) applications and devices rapidly grow, cyber-attacks on IoT networks/systems also have an increasing trend, thus increasing the threat to security and privacy. Botnet is one of the threats that dominate the attacks as it can easily compromise devices attached to an IoT networks/systems. The compromised devices will behave like the normal ones, thus it is difficult to recognize them. Several intelligent approaches have been introduced to improve the detection accuracy of this type of cyber-attack, including deep learning and machine learning techniques. Moreover, dimensionality reduction methods are implemented during the preprocessing stage. This research work proposes deep Autoencoder dimensionality reduction method combined with Artificial Neural Network (ANN) classifier as botnet detection system for IoT networks/systems. Experiments were carried out using 3- layer, 4-layer and 5-layer pre-processing data from the MedBIoT dataset. Experimental results show that using a 5-layer Autoencoder has better results, with details of accuracy value of 99.72%, Precision of 99.82%, Sensitivity of 99.82%, Specificity of 99.31%, and F1-score value of 99.82%. On the other hand, the 5-layer Autoencoder model succeeded in reducing the dataset size from 152 MB to 12.6 MB (equivalent to a reduction of 91.2%). Besides that, experiments on the N_BaIoT dataset also have a very high level of accuracy, up to 99.99%.

Anaphoricity Determination of Zero Pronouns for Intra-sentential Zero Anaphora Resolution (문장 내 영 조응어 해석을 위한 영대명사의 조응성 결정)

  • Kim, Kye-Sung;Park, Seong-Bae;Park, Se-Young;Lee, Sang-Jo
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.12
    • /
    • pp.928-935
    • /
    • 2010
  • Identifying the referents of omitted elements in a text is an important task to many natural language processing applications such as machine translation, information extraction and so on. These omitted elements are often called zero anaphors or zero pronouns, and are regarded as one of the most common forms of reference. However, since all zero elements do not refer to explicit objects which occur in the same text, recent work on zero anaphora resolution have attempted to identify the anaphoricity of zero pronouns. This paper focuses on intra-sentential anaphoricity determination of subject zero pronouns that frequently occur in Korean. Unlike previous studies on pair-wise comparisons, this study attempts to determine the intra-sentential anaphoricity of zero pronouns by learning directly the structure of clauses in which either non-anaphoric or inter-sentential subject zero pronouns occur. The proposed method outperforms baseline methods, and anaphoricity determination of zero pronouns will play an important role in resolving zero anaphora.

Data BILuring Method for Solving Sparseness Problem in Collaborative Filtering (협동적 여과에서의 희소성 문제 해결을 위한 데이타 블러링 기법)

  • Kim, Hyung-Il;Kim, Jun-Tae
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.6
    • /
    • pp.542-553
    • /
    • 2005
  • Recommendation systems analyze user preferences and recommend items to a user by predicting the user's preference for those items. Among various kinds of recommendation methods, collaborative filtering(CF) has been widely used and successfully applied to practical applications. However, collaborative filtering has two inherent problems: data sparseness and the cold-start problems. If there are few known preferences for a user, it is difficult to find many similar users, and therefore the performance of recommendation is degraded. This problem is more serious when a new user is first using the system. In this paper we propose a method of integrating additional feature information of users and items into CF to overcome the difficulties caused by sparseness and improve the accuracy of recommendation. In our method, we first fill in unknown preference values by using the probability distribution of feature values, then generate the top-N recommendations by applying collaborative filtering on the modified data. We call this method of filling unknown preference values as data blurring. Several experimental results that show the effectiveness of the proposed method are also presented.

Analysis of the Valuation Model for the state-of-the-art ICT Technology (첨단 ICT 기술에 대한 가치평가 모델 분석)

  • Oh, Sun-Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.705-710
    • /
    • 2021
  • Nowadays, cutting-edge information communication technology is the genuine core technology of the fourth Industrial Revolution and is still making great progress rapidly among various technology fields. The biggest issue in ICT fields is the machine learning based Artificial Intelligence applications using big data in cloud computing environment on the basis of wireless network, and also the technology fields of autonomous control applications such as Autonomous Car or Mobile Robot. Since value of the high-tech ICT technology depends on the surrounded environmental factors and is very flexible, the precise technology valuation method is urgently needed in order to get successful technology transfer, transaction and commercialization. In this research, we analyze the characteristics of the high-tech ICT technology and the main factors in technology transfer or commercialization process, and propose the precise technology valuation method that reflects the characteristics of the ICT technology through phased analysis of the existing technology valuationmodel.

Performance Optimization Strategies for Fully Utilizing Apache Spark (아파치 스파크 활용 극대화를 위한 성능 최적화 기법)

  • Myung, Rohyoung;Yu, Heonchang;Choi, Sukyong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.1
    • /
    • pp.9-18
    • /
    • 2018
  • Enhancing performance of big data analytics in distributed environment has been issued because most of the big data related applications such as machine learning techniques and streaming services generally utilize distributed computing frameworks. Thus, optimizing performance of those applications at Spark has been actively researched. Since optimizing performance of the applications at distributed environment is challenging because it not only needs optimizing the applications themselves but also requires tuning of the distributed system configuration parameters. Although prior researches made a huge effort to improve execution performance, most of them only focused on one of three performance optimization aspect: application design, system tuning, hardware utilization. Thus, they couldn't handle an orchestration of those aspects. In this paper, we deeply analyze and model the application processing procedure of the Spark. Through the analyzed results, we propose performance optimization schemes for each step of the procedure: inner stage and outer stage. We also propose appropriate partitioning mechanism by analyzing relationship between partitioning parallelism and performance of the applications. We applied those three performance optimization schemes to WordCount, Pagerank, and Kmeans which are basic big data analytics and found nearly 50% performance improvement when all of those schemes are applied.

Game-bot detection based on Clustering of asset-varied location coordinates (자산변동 좌표 클러스터링 기반 게임봇 탐지)

  • Song, Hyun Min;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1131-1141
    • /
    • 2015
  • In this paper, we proposed a new approach of machine learning based method for detecting game-bots from normal players in MMORPG by inspecting the player's action log data especially in-game money increasing/decreasing event log data. DBSCAN (Density Based Spatial Clustering of Applications with Noise), an one of density based clustering algorithms, is used to extract the attributes of spatial characteristics of each players such as a number of clusters, a ratio of core points, member points and noise points. Most of all, even game-bot developers know principles of this detection system, they cannot avoid the system because moving a wide area to hunt the monster is very inefficient and unproductive. As the result, game-bots show definite differences from normal players in spatial characteristics such as very low ratio, less than 5%, of noise points while normal player's ratio of noise points is high. In experiments on real action log data of MMORPG, our game-bot detection system shows a good performance with high game-bot detection accuracy.