• Title/Summary/Keyword: machine learning applications

Search Result 538, Processing Time 0.027 seconds

A Classifiable Sub-Flow Selection Method for Traffic Classification in Mobile IP Networks

  • Satoh, Akihiro;Osada, Toshiaki;Abe, Toru;Kitagata, Gen;Shiratori, Norio;Kinoshita, Tetsuo
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.307-322
    • /
    • 2010
  • Traffic classification is an essential task for network management. Many researchers have paid attention to initial sub-flow features based classifiers for traffic classification. However, the existing classifiers cannot classify traffic effectively in mobile IP networks. The classifiers depend on initial sub-flows, but they cannot always capture the sub-flows at a point of attachment for a variety of elements because of seamless mobility. Thus the ideal classifier should be capable of traffic classification based on not only initial sub-flows but also various types of sub-flows. In this paper, we propose a classifiable sub-flow selection method to realize the ideal classifier. The experimental results are so far promising for this research direction, even though they are derived from a reduced set of general applications and under relatively simplifying assumptions. Altogether, the significant contribution is indicating the feasibility of the ideal classifier by selecting not only initial sub-flows but also transition sub-flows.

Feature Selection for Abnormal Driving Behavior Recognition Based on Variance Distribution of Power Spectral Density

  • Nassuna, Hellen;Kim, Jaehoon;Eyobu, Odongo Steven;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.3
    • /
    • pp.119-127
    • /
    • 2020
  • The detection and recognition of abnormal driving becomes crucial for achieving safety in Intelligent Transportation Systems (ITS). This paper presents a feature extraction method based on spectral data to train a neural network model for driving behavior recognition. The proposed method uses a two stage signal processing approach to derive time-saving and efficient feature vectors. For the first stage, the feature vector set is obtained by calculating variances from each frequency bin containing the power spectrum data. The feature set is further reduced in the second stage where an intersection method is used to select more significant features that are finally applied for training a neural network model. A stream of live signals are fed to the trained model which recognizes the abnormal driving behaviors. The driving behaviors considered in this study are weaving, sudden braking and normal driving. The effectiveness of the proposed method is demonstrated by comparing with existing methods, which are Particle Swarm Optimization (PSO) and Convolution Neural Network (CNN). The experiments show that the proposed approach achieves satisfactory results with less computational complexity.

River streamflow prediction using a deep neural network: a case study on the Red River, Vietnam

  • Le, Xuan-Hien;Ho, Hung Viet;Lee, Giha
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.843-856
    • /
    • 2019
  • Real-time flood prediction has an important role in significantly reducing potential damage caused by floods for urban residential areas located downstream of river basins. This paper presents an effective approach for flood forecasting based on the construction of a deep neural network (DNN) model. In addition, this research depends closely on the open-source software library, TensorFlow, which was developed by Google for machine and deep learning applications and research. The proposed model was applied to forecast the flowrate one, two, and three days in advance at the Son Tay hydrological station on the Red River, Vietnam. The input data of the model was a series of discharge data observed at five gauge stations on the Red River system, without requiring rainfall data, water levels and topographic characteristics. The research results indicate that the DNN model achieved a high performance for flood forecasting even though only a modest amount of data is required. When forecasting one and two days in advance, the Nash-Sutcliffe Efficiency (NSE) reached 0.993 and 0.938, respectively. The findings of this study suggest that the DNN model can be used to construct a real-time flood warning system on the Red River and for other river basins in Vietnam.

Nonlinear model for estimating depth map of haze removal (안개제거의 깊이 맵 추정을 위한 비선형 모델)

  • Lee, Seungmin;Ngo, Dat;Kang, Bongsoon
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.492-496
    • /
    • 2020
  • The visibility deteriorates in hazy weather and it is difficult to accurately recognize information captured by the camera. Research is being actively conducted to remove haze so that camera-based applications such as object localization/detection and lane recognition can operate normally even in hazy weather. In this paper, we propose a nonlinear model for depth map estimation through an extensive analysis that the difference between brightness and saturation in hazy image increases non-linearly with the depth of the image. The quantitative evaluation(MSE, SSIM, TMQI) shows that the proposed haze removal method based on the nonlinear model is superior to other state-of-the-art methods.

Face Recognition using Extended Center-Symmetric Pattern and 2D-PCA (Extended Center-Symmetric Pattern과 2D-PCA를 이용한 얼굴인식)

  • Lee, Hyeon Gu;Kim, Dong Ju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.111-119
    • /
    • 2013
  • Face recognition has recently become one of the most popular research areas in the fields of computer vision, machine learning, and pattern recognition because it spans numerous applications, such as access control, surveillance, security, credit-card verification, and criminal identification. In this paper, we propose a simple descriptor called an ECSP(Extended Center-Symmetric Pattern) for illumination-robust face recognition. The ECSP operator encodes the texture information of a local face region by emphasizing diagonal components of a previous CS-LBP(Center-Symmetric Local Binary Pattern). Here, the diagonal components are emphasized because facial textures along the diagonal direction contain much more information than those of other directions. The facial texture information of the ECSP operator is then used as the input image of an image covariance-based feature extraction algorithm such as 2D-PCA(Two-Dimensional Principal Component Analysis). Performance evaluation of the proposed approach was carried out using various binary pattern operators and recognition algorithms on the Yale B database. The experimental results demonstrated that the proposed approach achieved better recognition accuracy than other approaches, and we confirmed that the proposed approach is effective against illumination variation.

Subset selection in multiple linear regression: An improved Tabu search

  • Bae, Jaegug;Kim, Jung-Tae;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.138-145
    • /
    • 2016
  • This paper proposes an improved tabu search method for subset selection in multiple linear regression models. Variable selection is a vital combinatorial optimization problem in multivariate statistics. The selection of the optimal subset of variables is necessary in order to reliably construct a multiple linear regression model. Its applications widely range from machine learning, timeseries prediction, and multi-class classification to noise detection. Since this problem has NP-complete nature, it becomes more difficult to find the optimal solution as the number of variables increases. Two typical metaheuristic methods have been developed to tackle the problem: the tabu search algorithm and hybrid genetic and simulated annealing algorithm. However, these two methods have shortcomings. The tabu search method requires a large amount of computing time, and the hybrid algorithm produces a less accurate solution. To overcome the shortcomings of these methods, we propose an improved tabu search algorithm to reduce moves of the neighborhood and to adopt an effective move search strategy. To evaluate the performance of the proposed method, comparative studies are performed on small literature data sets and on large simulation data sets. Computational results show that the proposed method outperforms two metaheuristic methods in terms of the computing time and solution quality.

A Study of Behavior Based Authentication Using Touch Dynamics and Application Usage on Android (안드로이드에서 앱 사용과 터치 정보를 이용한 행위 기반 사용자 인증 기술 연구)

  • Kim, Minwoo;Kim, Seungyeon;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.361-371
    • /
    • 2017
  • The increase in user data stored in the device implies the increase in threats of users' sensitive data. Currently, smartphone authentication mechanisms such as Pattern Lock, fingerprint recognition are widely used. Although, there exist disadvantages of inconvenience use and dependence that users need to depend on their own memory. User behavior based authentication mechanism have advantages of high convenience by offering continuous authentication when using the mobile device. However, these mechanisms show limitations on low accuracy of authentication and there are researches to improve the accuracy. This paper proposes improved authentication mechanism that uses user's smartphone application usage pattern which has not considered on earlier studies. Also, we analyze performance of proposed mechanism with collected datasets from actual use of smartphone applications.

Building an Ensemble Machine by Constructive Selective Learning Neural Networks (건설적 선택학습 신경망을 이용한 앙상블 머신의 구축)

  • Kim, Seok-Jun;Jang, Byeong-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.12
    • /
    • pp.1202-1210
    • /
    • 2000
  • 본 논문에서는 효과적인 앙상블 머신의 구축을 위한 새로운 방안을 제시한다. 효과적인 앙상블의 구축을 위해서는 앙상블 멤버들간의 상관관계가 아주 낮아야 하며 또한 각 앙상블 멤버들은 전체 문제를 어느 정도는 정확하게 학습하면서도 서로들간의 불일치 하는 부분이 존재해야 한다는 것이 여러 논문들에 발표되었다. 본 논문에서는 주어진 문제의 다양한 면을 학습한 다수의 앙상블 후보 네트웍을 생성하기 위하여 건설적 학습 알고리즘과 능동 학습 알고리즘을 결합한 형태의 신경망 학습 알고리즘을 이용한다. 이 신경망의 학습은 최소 은닉 노드에서 최대 은닉노드까지 점진적으로 은닉노드를 늘려나감과 동시에 후보 데이타 집합에서 학습에 사용할 훈련 데이타를 점진적으로 선택해 나가면서 이루어진다. 은닉 노드의 증가시점에서 앙상블의 후부 네트웍이 생성된다. 이러한 한 차례의 학습 진행을 한 chain이라 정의한다. 다수의 chain을 통하여 다양한 형태의 네트웍 크기와 다양한 형태의 데이타 분포를 학습한 후보 내트웍들이 생성된다. 이렇게 생성된 후보 네트웍들은 확률적 비례 선택법에 의해 선택된 후 generalized ensemble method (GEM)에 의해 결합되어 최종적인 앙상블 성능을 보여준다. 제안된 알고리즘은 한개의 인공 데이타와 한 개의 실세계 데이타에 적용되었다. 실험을 통하여 제안된 알고리즘에 의해 구성된 앙상블의 최대 일반화 성능은 다른 알고리즘에 의한 그것보다 우수함을 알 수 있다.

  • PDF

Removing Out - Of - Distribution Samples on Classification Task

  • Dang, Thanh-Vu;Vo, Hoang-Trong;Yu, Gwang-Hyun;Lee, Ju-Hwan;Nguyen, Huy-Toan;Kim, Jin-Young
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.80-89
    • /
    • 2020
  • Out - of - distribution (OOD) samples are frequently encountered when deploying a classification model in plenty of real-world machine learning-based applications. Those samples are normally sampling far away from the training distribution, but many classifiers still assign them high reliability to belong to one of the training categories. In this study, we address the problem of removing OOD examples by estimating marginal density estimation using variational autoencoder (VAE). We also investigate other proper methods, such as temperature scaling, Gaussian discrimination analysis, and label smoothing. We use Chonnam National University (CNU) weeds dataset as the in - distribution dataset and CIFAR-10, CalTeach as the OOD datasets. Quantitative results show that the proposed framework can reject the OOD test samples with a suitable threshold.

Face Recognition using 2D-PCA and Image Partition (2D - PCA와 영상분할을 이용한 얼굴인식)

  • Lee, Hyeon Gu;Kim, Dong Ju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.31-40
    • /
    • 2012
  • Face recognition refers to the process of identifying individuals based on their facial features. It has recently become one of the most popular research areas in the fields of computer vision, machine learning, and pattern recognition because it spans numerous consumer applications, such as access control, surveillance, security, credit-card verification, and criminal identification. However, illumination variation on face generally cause performance degradation of face recognition systems under practical environments. Thus, this paper proposes an novel face recognition system using a fusion approach based on local binary pattern and two-dimensional principal component analysis. To minimize illumination effects, the face image undergoes the local binary pattern operation, and the resultant image are divided into two sub-images. Then, two-dimensional principal component analysis algorithm is separately applied to each sub-images. The individual scores obtained from two sub-images are integrated using a weighted-summation rule, and the fused-score is utilized to classify the unknown user. The performance evaluation of the proposed system was performed using the Yale B database and CMU-PIE database, and the proposed method shows the better recognition results in comparison with existing face recognition techniques.