• Title/Summary/Keyword: machine learning applications

Search Result 538, Processing Time 0.025 seconds

Hypernetwork-based Natural Language Sentence Generation by Word Relation Pattern Learning (단어 간 관계 패턴 학습을 통한 하이퍼네트워크 기반 자연 언어 문장 생성)

  • Seok, Ho-Sik;Bootkrajang, Jakramate;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.3
    • /
    • pp.205-213
    • /
    • 2010
  • We introduce a natural language sentence generation (NLG) method based on learning of word-association patterns. Existing NLG methods assume the inherent grammar rules or use template based method. Contrary to the existing NLG methods, the presented method learns the words-association patterns using only the co-occurrence of words without additional information such as tagging. We employ the hypernetwork method to analyze and represent the words-association patterns. As training going on, the model complexity is increased. After completing each training phase, natural language sentences are generated using the learned hyperedges. The number of grammatically plausible sentences increases after each training phase. We confirm that the proposed method has a potential for learning grammatical properties of training corpuses by comparing the diversity of grammatical rules of training corpuses and the generated sentences.

Knowledge Transfer Using User-Generated Data within Real-Time Cloud Services

  • Zhang, Jing;Pan, Jianhan;Cai, Zhicheng;Li, Min;Cui, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.77-92
    • /
    • 2020
  • When automatic speech recognition (ASR) is provided as a cloud service, it is easy to collect voice and application domain data from users. Harnessing these data will facilitate the provision of more personalized services. In this paper, we demonstrate our transfer learning-based knowledge service that built with the user-generated data collected through our novel system that deliveries personalized ASR service. First, we discuss the motivation, challenges, and prospects of building up such a knowledge-based service-oriented system. Second, we present a Quadruple Transfer Learning (QTL) method that can learn a classification model from a source domain and transfer it to a target domain. Third, we provide an overview architecture of our novel system that collects voice data from mobile users, labels the data via crowdsourcing, utilises these collected user-generated data to train different machine learning models, and delivers the personalised real-time cloud services. Finally, we use the E-Book data collected from our system to train classification models and apply them in the smart TV domain, and the experimental results show that our QTL method is effective in two classification tasks, which confirms that the knowledge transfer provides a value-added service for the upper-layer mobile applications in different domains.

Performance Improvement of a Korean Prosodic Phrase Boundary Prediction Model using Efficient Feature Selection (효율적인 기계학습 자질 선별을 통한 한국어 운율구 경계 예측 모델의 성능 향상)

  • Kim, Min-Ho;Kwon, Hyuk-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.11
    • /
    • pp.837-844
    • /
    • 2010
  • Prediction of the prosodic phrase boundary is one of the most important natural language processing tasks. We propose, for the natural prediction of the Korean prosodic phrase boundary, a statistical approach incorporating efficient learning features. These new features reflect the factors that affect generation of the prosodic phrase boundary better than existing learning features. Notably, moreover, such learning features, extracted according to the hand-crafted prosodic phrase boundary prediction rule, impart higher accuracy. We developed a statistical model for Korean prosodic phrase boundaries based on the proposed new features. The results were 86.63% accuracy for three levels (major break, minor break, no break) and 81.14% accuracy for six levels (major break with falling tone/rising tone, minor break with falling tone/rising tone/middle tone, no break).

Design and Implementation of Hand Gesture Recognizer Based on Artificial Neural Network (인공신경망 기반 손동작 인식기의 설계 및 구현)

  • Kim, Minwoo;Jeong, Woojae;Cho, Jaechan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.675-680
    • /
    • 2018
  • In this paper, we propose a hand gesture recognizer using restricted coulomb energy (RCE) neural network, and present hardware implementation results for real-time learning and recognition. Since RCE-NN has a flexible network architecture and real-time learning process with low complexity, it is suitable for hand recognition applications. The 3D number dataset was created using an FPGA-based test platform and the designed hand gesture recognizer showed 98.8% recognition accuracy for the 3D number dataset. The proposed hand gesture recognizer is implemented in Intel-Altera cyclone IV FPGA and confirmed that it can be implemented with 26,702 logic elements and 258Kbit memory. In addition, real-time learning and recognition verification were performed at an operating frequency of 70MHz.

Lifesaver: Android-based Application for Human Emergency Falling State Recognition

  • Abbas, Qaisar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.267-275
    • /
    • 2021
  • Smart application is developed in this paper by using an android-based platform to automatically determine the human emergency state (Lifesaver) by using different technology sensors of the mobile. In practice, this Lifesaver has many applications, and it can be easily combined with other applications as well to determine the emergency of humans. For example, if an old human falls due to some medical reasons, then this application is automatically determining the human state and then calls a person from this emergency contact list. Moreover, if the car accidentally crashes due to an accident, then the Lifesaver application is also helping to call a person who is on the emergency contact list to save human life. Therefore, the main objective of this project is to develop an application that can save human life. As a result, the proposed Lifesaver application is utilized to assist the person to get immediate attention in case of absence of help in four different situations. To develop the Lifesaver system, the GPS is also integrated to get the exact location of a human in case of emergency. Moreover, the emergency list of friends and authorities is also maintained to develop this application. To test and evaluate the Lifesaver system, the 50 different human data are collected with different age groups in the range of (40-70) and the performance of the Lifesaver application is also evaluated and compared with other state-of-the-art applications. On average, the Lifesaver system is achieved 95.5% detection accuracy and the value of 91.5 based on emergency index metric, which is outperformed compared to other applications in this domain.

Investigations on data-driven stochastic optimal control and approximate-inference-based reinforcement learning methods (데이터 기반 확률론적 최적제어와 근사적 추론 기반 강화 학습 방법론에 관한 고찰)

  • Park, Jooyoung;Ji, Seunghyun;Sung, Keehoon;Heo, Seongman;Park, Kyungwook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.319-326
    • /
    • 2015
  • Recently in the fields o f stochastic optimal control ( SOC) and reinforcemnet l earning (RL), there have been a great deal of research efforts for the problem of finding data-based sub-optimal control policies. The conventional theory for finding optimal controllers via the value-function-based dynamic programming was established for solving the stochastic optimal control problems with solid theoretical background. However, they can be successfully applied only to extremely simple cases. Hence, the data-based modern approach, which tries to find sub-optimal solutions utilizing relevant data such as the state-transition and reward signals instead of rigorous mathematical analyses, is particularly attractive to practical applications. In this paper, we consider a couple of methods combining the modern SOC strategies and approximate inference together with machine-learning-based data treatment methods. Also, we apply the resultant methods to a variety of application domains including financial engineering, and observe their performance.

Ensemble Learning with Support Vector Machines for Bond Rating (회사채 신용등급 예측을 위한 SVM 앙상블학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.29-45
    • /
    • 2012
  • Bond rating is regarded as an important event for measuring financial risk of companies and for determining the investment returns of investors. As a result, it has been a popular research topic for researchers to predict companies' credit ratings by applying statistical and machine learning techniques. The statistical techniques, including multiple regression, multiple discriminant analysis (MDA), logistic models (LOGIT), and probit analysis, have been traditionally used in bond rating. However, one major drawback is that it should be based on strict assumptions. Such strict assumptions include linearity, normality, independence among predictor variables and pre-existing functional forms relating the criterion variablesand the predictor variables. Those strict assumptions of traditional statistics have limited their application to the real world. Machine learning techniques also used in bond rating prediction models include decision trees (DT), neural networks (NN), and Support Vector Machine (SVM). Especially, SVM is recognized as a new and promising classification and regression analysis method. SVM learns a separating hyperplane that can maximize the margin between two categories. SVM is simple enough to be analyzed mathematical, and leads to high performance in practical applications. SVM implements the structuralrisk minimization principle and searches to minimize an upper bound of the generalization error. In addition, the solution of SVM may be a global optimum and thus, overfitting is unlikely to occur with SVM. In addition, SVM does not require too many data sample for training since it builds prediction models by only using some representative sample near the boundaries called support vectors. A number of experimental researches have indicated that SVM has been successfully applied in a variety of pattern recognition fields. However, there are three major drawbacks that can be potential causes for degrading SVM's performance. First, SVM is originally proposed for solving binary-class classification problems. Methods for combining SVMs for multi-class classification such as One-Against-One, One-Against-All have been proposed, but they do not improve the performance in multi-class classification problem as much as SVM for binary-class classification. Second, approximation algorithms (e.g. decomposition methods, sequential minimal optimization algorithm) could be used for effective multi-class computation to reduce computation time, but it could deteriorate classification performance. Third, the difficulty in multi-class prediction problems is in data imbalance problem that can occur when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. SVM ensemble learning is one of machine learning methods to cope with the above drawbacks. Ensemble learning is a method for improving the performance of classification and prediction algorithms. AdaBoost is one of the widely used ensemble learning techniques. It constructs a composite classifier by sequentially training classifiers while increasing weight on the misclassified observations through iterations. The observations that are incorrectly predicted by previous classifiers are chosen more often than examples that are correctly predicted. Thus Boosting attempts to produce new classifiers that are better able to predict examples for which the current ensemble's performance is poor. In this way, it can reinforce the training of the misclassified observations of the minority class. This paper proposes a multiclass Geometric Mean-based Boosting (MGM-Boost) to resolve multiclass prediction problem. Since MGM-Boost introduces the notion of geometric mean into AdaBoost, it can perform learning process considering the geometric mean-based accuracy and errors of multiclass. This study applies MGM-Boost to the real-world bond rating case for Korean companies to examine the feasibility of MGM-Boost. 10-fold cross validations for threetimes with different random seeds are performed in order to ensure that the comparison among three different classifiers does not happen by chance. For each of 10-fold cross validation, the entire data set is first partitioned into tenequal-sized sets, and then each set is in turn used as the test set while the classifier trains on the other nine sets. That is, cross-validated folds have been tested independently of each algorithm. Through these steps, we have obtained the results for classifiers on each of the 30 experiments. In the comparison of arithmetic mean-based prediction accuracy between individual classifiers, MGM-Boost (52.95%) shows higher prediction accuracy than both AdaBoost (51.69%) and SVM (49.47%). MGM-Boost (28.12%) also shows the higher prediction accuracy than AdaBoost (24.65%) and SVM (15.42%)in terms of geometric mean-based prediction accuracy. T-test is used to examine whether the performance of each classifiers for 30 folds is significantly different. The results indicate that performance of MGM-Boost is significantly different from AdaBoost and SVM classifiers at 1% level. These results mean that MGM-Boost can provide robust and stable solutions to multi-classproblems such as bond rating.

Generation and Selection of Nominal Virtual Examples for Improving the Classifier Performance (분류기 성능 향상을 위한 범주 속성 가상예제의 생성과 선별)

  • Lee, Yu-Jung;Kang, Byoung-Ho;Kang, Jae-Ho;Ryu, Kwang-Ryel
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.12
    • /
    • pp.1052-1061
    • /
    • 2006
  • This paper presents a method of using virtual examples to improve the classification accuracy for data with nominal attributes. Most of the previous researches on virtual examples focused on data with numeric attributes, and they used domain-specific knowledge to generate useful virtual examples for a particularly targeted learning algorithm. Instead of using domain-specific knowledge, our method samples virtual examples from a naive Bayesian network constructed from the given training set. A sampled example is considered useful if it contributes to the increment of the network's conditional likelihood when added to the training set. A set of useful virtual examples can be collected by repeating this process of sampling followed by evaluation. Experiments have shown that the virtual examples collected this way.can help various learning algorithms to derive classifiers of improved accuracy.

Developing an Ensemble Classifier for Bankruptcy Prediction (부도 예측을 위한 앙상블 분류기 개발)

  • Min, Sung-Hwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.139-148
    • /
    • 2012
  • An ensemble of classifiers is to employ a set of individually trained classifiers and combine their predictions. It has been found that in most cases the ensembles produce more accurate predictions than the base classifiers. Combining outputs from multiple classifiers, known as ensemble learning, is one of the standard and most important techniques for improving classification accuracy in machine learning. An ensemble of classifiers is efficient only if the individual classifiers make decisions as diverse as possible. Bagging is the most popular method of ensemble learning to generate a diverse set of classifiers. Diversity in bagging is obtained by using different training sets. The different training data subsets are randomly drawn with replacement from the entire training dataset. The random subspace method is an ensemble construction technique using different attribute subsets. In the random subspace, the training dataset is also modified as in bagging. However, this modification is performed in the feature space. Bagging and random subspace are quite well known and popular ensemble algorithms. However, few studies have dealt with the integration of bagging and random subspace using SVM Classifiers, though there is a great potential for useful applications in this area. The focus of this paper is to propose methods for improving SVM performance using hybrid ensemble strategy for bankruptcy prediction. This paper applies the proposed ensemble model to the bankruptcy prediction problem using a real data set from Korean companies.

Sensorless Speed Control of Direct Current Motor by Neural Network (신경회로망을 이용한 직류전동기의 센서리스 속도제어)

  • 김종수;강성주
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1743-1750
    • /
    • 2003
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as a speed detector, but they increase cost and size of the motor and restrict the industrial drive applications. So in these days, many papers have reported in the sensorless operation of DC motor〔3­5〕. This paper presents a new sensorless strategy using neural networks〔6­8〕. Neural network has three layers which are input layer, hidden layer and output layer. The optimal neural network structure was tracked down by trial and error, and it was found that 4­16­1 neural network structure has given suitable results for the instantaneous rotor speed. Also, learning method is very important in neural network. Supervised learning methods〔8〕 are typically used to train the neural network for learning the input/output pattern presented. The back­propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.