• Title/Summary/Keyword: machine learning applications

Search Result 538, Processing Time 0.032 seconds

IoT and Smart City Technology: Challenges, Opportunities, and Solutions

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.233-238
    • /
    • 2019
  • Internet of Things (IoT) technology has been recently utilized in diverse fields. Smart city is one of the IoT application domains with a lot of research topics and which is operated by integrated IoT applications. In this paper, diverse kinds of solutions, processes, and frameworks to address the existing challenges in information technology are introduced. Such solutions involve various future track topics including blockchain, security, steganography, optimization, machine learning, smart system, and so on. In the subsequent paragraphs, we describe each topic in a summarized way in terms of the existing challenges and their solutions. Specifically, this paper introduced 18 novel and enhanced research studies from different countries in the world. We present diverse kinds of paradigms to subjects that tackle diverse kinds of research areas such as IoT and Smart City, and so on.

Optimised ML-based System Model for Adult-Child Actions Recognition

  • Alhammami, Muhammad;Hammami, Samir Marwan;Ooi, Chee-Pun;Tan, Wooi-Haw
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.929-944
    • /
    • 2019
  • Many critical applications require accurate real-time human action recognition. However, there are many hurdles associated with capturing and pre-processing image data, calculating features, and classification because they consume significant resources for both storage and computation. To circumvent these hurdles, this paper presents a recognition machine learning (ML) based system model which uses reduced data structure features by projecting real 3D skeleton modality on virtual 2D space. The MMU VAAC dataset is used to test the proposed ML model. The results show a high accuracy rate of 97.88% which is only slightly lower than the accuracy when using the original 3D modality-based features but with a 75% reduction ratio from using RGB modality. These results motivate implementing the proposed recognition model on an embedded system platform in the future.

A Prediction Model of Asthma Diseases in Teenagers Using Artificial Intelligence Models (인공지능 모델을 이용한 청소년들의 천식 질환 발생 예측 모델)

  • Noh, Mi Jin;Park, Soon Chang
    • Journal of Information Technology Applications and Management
    • /
    • v.27 no.6
    • /
    • pp.171-180
    • /
    • 2020
  • With the recent increase in asthma, asthma has become recognized as one of the diseases. The perception that bronchial asthma is a chronic disease and requires treatment has been strengthened. In addition, asthma is recognized as a dangerous disease due to environmental changes and efforts are made to minimize these risks. However, the environmental impact on asthma is hardly a factor that individuals in asthmatic patients can cope with. Therefore, this study was conducted to see if the asthma disease could be replaced by the individual efforts of asthma patients. In particular, since the management of asthma is important during adolescence, we conducted research on asthma in teenagers. Utilizing support vector machines, artificial neural networks and deep learning techniques that have recently drawn attention, we propose models to predict the asthma of teenagers. The study also provides guidelines to avoid factors that can cause asthma in teenagers.

Continuous Human Activity Detection Using Multiple Smart Wearable Devices in IoT Environments

  • Alshamrani, Adel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.221-228
    • /
    • 2021
  • Recent improvements on the quality, fidelity and availability of biometric data have led to effective human physical activity detection (HPAD) in real time which adds significant value to applications such as human behavior identification, healthcare monitoring, and user authentication. Current approaches usually use machine-learning techniques for human physical activity recognition based on the data collected from wearable accelerometer sensor from a single wearable smart device on the user. However, collecting data from a single wearable smart device may not provide the complete user activity data as it is usually attached to only single part of the user's body. In addition, in case of the absence of the single sensor, then no data can be collected. Hence, in this paper, a continuous HPAD will be presented to effectively perform user activity detection with mobile service infrastructure using multiple wearable smart devices, namely smartphone and smartwatch placed in various locations on user's body for more accurate HPAD. A case study on a comprehensive dataset of classified human physical activities with our HAPD approach shows substantial improvement in HPAD accuracy.

A Survey on Image Emotion Recognition

  • Zhao, Guangzhe;Yang, Hanting;Tu, Bing;Zhang, Lei
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1138-1156
    • /
    • 2021
  • Emotional semantics are the highest level of semantics that can be extracted from an image. Constructing a system that can automatically recognize the emotional semantics from images will be significant for marketing, smart healthcare, and deep human-computer interaction. To understand the direction of image emotion recognition as well as the general research methods, we summarize the current development trends and shed light on potential future research. The primary contributions of this paper are as follows. We investigate the color, texture, shape and contour features used for emotional semantics extraction. We establish two models that map images into emotional space and introduce in detail the various processes in the image emotional semantic recognition framework. We also discuss important datasets and useful applications in the field such as garment image and image retrieval. We conclude with a brief discussion about future research trends.

Trends in Low-Power On-Device Vision SW Framework Technology (저전력 온디바이스 비전 SW 프레임워크 기술 동향)

  • Lee, M.S.;Bae, S.Y.;Kim, J.S.;Seok, J.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.56-64
    • /
    • 2021
  • Many computer vision algorithms are computationally expensive and require a lot of computing resources. Recently, owing to machine learning technology and high-performance embedded systems, vision processing applications, such as object detection, face recognition, and visual inspection, are widely used. However, on-devices need to use their resources to handle powerful vision works with low power consumption in heterogeneous environments. Consequently, global manufacturers are trying to lock many developers into their ecosystem, providing integrated low-power chips and dedicated vision libraries. Khronos Group-an international standard organization-has released the OpenVX standard for high-performance/low-power vision processing in heterogeneous on-device systems. This paper describes vision libraries for the embedded systems and presents the OpenVX standard along with related trends for on-device vision system.

A Study on Explainable Artificial Intelligence-based Sentimental Analysis System Model

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.142-151
    • /
    • 2022
  • In this paper, a model combined with explanatory artificial intelligence (xAI) models was presented to secure the reliability of machine learning-based sentiment analysis and prediction. The applicability of the proposed model was tested and described using the IMDB dataset. This approach has an advantage in that it can explain how the data affects the prediction results of the model from various perspectives. In various applications of sentiment analysis such as recommendation system, emotion analysis through facial expression recognition, and opinion analysis, it is possible to gain trust from users of the system by presenting more specific and evidence-based analysis results to users.

A Study of Big Time Series Data Compression based on CNN Algorithm (CNN 기반 대용량 시계열 데이터 압축 기법연구)

  • Sang-Ho Hwang;Sungho Kim;Sung Jae Kim;Tae Geun Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, we implement a lossless compression technique for time-series data generated by IoT (Internet of Things) devices to reduce the disk spaces. The proposed compression technique reduces the size of the encoded data by selectively applying CNN (Convolutional Neural Networks) or Delta encoding depending on the situation in the Forecasting algorithm that performs prediction on time series data. In addition, the proposed technique sequentially performs zigzag encoding, splitting, and bit packing to increase the compression ratio. We showed that the proposed compression method has a compression ratio of up to 1.60 for the original data.

TinyML Gamma Radiation Classifier

  • Moez Altayeb;Marco Zennaro;Ermanno Pietrosemoli
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.443-451
    • /
    • 2023
  • Machine Learning has introduced many solutions in data science, but its application in IoT faces significant challenges, due to the limitations in memory size and processing capability of constrained devices. In this paper we design an automatic gamma radiation detection and identification embedded system that exploits the power of TinyML in a SiPM micro radiation sensor leveraging the Edge Impulse platform. The model is trained using real gamma source data enhanced by software augmentation algorithms. Tests show high accuracy in real time processing. This design has promising applications in general-purpose radiation detection and identification, nuclear safety, medical diagnosis and it is also amenable for deployment in small satellites.

Prediction of PM10 concentration in Seoul, Korea using Bayesian network

  • Minjoo Joa;Rosy Oh;Man-Suk Oh
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.5
    • /
    • pp.517-530
    • /
    • 2023
  • Recent studies revealed that fine dust in ambient air may cause various health problems such as respiratory diseases and cancer. To prevent the toxic effects of fine dust, it is important to predict the concentration of fine dust in advance and to identify factors that are closely related to fine dust. In this study, we developed a Bayesian network model for predicting PM10 concentration in Seoul, Korea, and visualized the relationship between important factors. The network was trained by using air quality and meteorological data collected in Seoul between 2018 and 2021. The study results showed that current PM10 concentration, season, carbon monoxide (CO) were the top 3 effective factors in 24 hours ahead prediction of PM10 concentration in Seoul, and that there were interactive effects.