• Title/Summary/Keyword: machine learning applications

Search Result 538, Processing Time 0.039 seconds

Effect of Training Sequence Control in On-line Learning for Multilayer Perceptron (다계층 퍼셉트론의 온라인 학습에서 학습 순서 제어의 효과)

  • Lee, Jae-Young;Kim, Hwang-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.491-502
    • /
    • 2010
  • When human beings acquire and develop knowledge through education, their prior knowledge influences the next learning process. As this is a fact that should be considered in machine learning, we need to examine the effects of controlling the order of training sequence on machine learning. In this research, the role of the supervisor is extended to control the order of training samples, in addition to just instructing the target values for classification problems. The supervisor sequences the training examples categorized by SOM to the learning model which in this case is MLP. The proposed method is distinguished in that it selects the most instructive example from categories formed by SOM to assist the learning progress, while others use SOM only as a preprocessing method for training samples. The result shows that the method is effective in terms of the number of samples used and time taken in training.

Evolutionary Hypernetwork Model for Higher Order Pattern Recognition on Real-valued Feature Data without Discretization (이산화 과정을 배제한 실수 값 인자 데이터의 고차 패턴 분석을 위한 진화연산 기반 하이퍼네트워크 모델)

  • Ha, Jung-Woo;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.120-128
    • /
    • 2010
  • A hypernetwork is a generalized hypo-graph and a probabilistic graphical model based on evolutionary learning. Hypernetwork models have been applied to various domains including pattern recognition and bioinformatics. Nevertheless, conventional hypernetwork models have the limitation that they can manage data with categorical or discrete attibutes only since the learning method of hypernetworks is based on equality comparison of hyperedges with learned data. Therefore, real-valued data need to be discretized by preprocessing before learning with hypernetworks. However, discretization causes inevitable information loss and possible decrease of accuracy in pattern classification. To overcome this weakness, we propose a novel feature-wise L1-distance based method for real-valued attributes in learning hypernetwork models in this study. We show that the proposed model improves the classification accuracy compared with conventional hypernetworks and it shows competitive performance over other machine learning methods.

The Analysis of Association between Learning Styles and a Model of IoT-based Education : Chi-Square Test for Association

  • Sayassatov, Dulan;Cho, Namjae
    • Journal of Information Technology Applications and Management
    • /
    • v.27 no.3
    • /
    • pp.19-36
    • /
    • 2020
  • The Internet of things (IoT) is a system of interrelated computed devices, digital machines and any physical objects which are provided with unique identifiers and the potential to transmit data to people or machine (M2M) without requiring human interaction. IoT devices can be used to monitor and control the electrical and electronic systems used in different fields like smart home, smart city, smart healthcare and etc. In this study we introduce four imaginary IoT devices as a learning support assistants according to students' dominant learning styles measured by Honey and Mumford Learning Styles: Activists, Reflectors, Theorists and Pragmatists. This research emphasizes the association between students' strong learning styles and a preference to appropriate IoT devices with specific characteristics. Moreover, different levels of IoT devices' architecture are clearly explained in this study where all the artificial devices are designed based on this structure. Data analysis of experiment were measured by the use of chi square test for association and research results showed the statistical significance of the estimated model and the impacts of each category over the model where we finally got accurate estimates for our research variables. This study revealed the importance of considering the students' dominant learning styles before inventing a new IoT device.

Time Series Data Processing Deep Learning system for Prediction of Hospital Outpatient Number (병원 외래환자수의 예측을 위한 시계열 데이터처리 딥러닝 시스템)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.313-318
    • /
    • 2021
  • The advent of the Deep Learning has applied to many industrial and general applications having an impact on our lives these days. Certain type of machine learning model is needed to be designed for a specific problem of field. Recently, there are many instances to solve the various COVID-19 related problems using deep learning model. Therefore, in this paper, a deep learning model for predicting number of outpatients of a hospital in advance is suggested. The suggested deep learning model is designed by using the Keras in Jupyter Notebook. The prediction result is being analyzed with the real data in graph, as well as the loss rate with some validation data to verify either for the underfitting or the overfitting.

Kernel-based actor-critic approach with applications

  • Chu, Baek-Suk;Jung, Keun-Woo;Park, Joo-Young
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.267-274
    • /
    • 2011
  • Recently, actor-critic methods have drawn significant interests in the area of reinforcement learning, and several algorithms have been studied along the line of the actor-critic strategy. In this paper, we consider a new type of actor-critic algorithms employing the kernel methods, which have recently shown to be very effective tools in the various fields of machine learning, and have performed investigations on combining the actor-critic strategy together with kernel methods. More specifically, this paper studies actor-critic algorithms utilizing the kernel-based least-squares estimation and policy gradient, and in its critic's part, the study uses a sliding-window-based kernel least-squares method, which leads to a fast and efficient value-function-estimation in a nonparametric setting. The applicability of the considered algorithms is illustrated via a robot locomotion problem and a tunnel ventilation control problem.

Bayesian Learning through Weight of Listener's Prefered Music Site for Music Recommender System

  • Cho, Young Sung;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.1
    • /
    • pp.33-43
    • /
    • 2016
  • Along with the spread of digital music and recent growth in the digital music industry, the demands for music recommender are increasing. These days, listeners have increasingly preferred to digital real-time streamlining and downloading to listen to music because it is convenient and affordable for the listeners to do that. We use Bayesian learning through weight of listener's prefered music site such as Melon, Billboard, Bugs Music, Soribada, and Gini. We reflect most popular current songs across all genres and styles for music recommender system using user profile. It is necessary for us to make the task of preprocessing of clustering the preference with weight of listener's preferred music site with popular music charts. We evaluated the proposed system on the data set of music sites to measure its performance. We reported some of the experimental result, which is better performance than the previous system.

Classification of Traffic Flows into QoS Classes by Unsupervised Learning and KNN Clustering

  • Zeng, Yi;Chen, Thomas M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.2
    • /
    • pp.134-146
    • /
    • 2009
  • Traffic classification seeks to assign packet flows to an appropriate quality of service(QoS) class based on flow statistics without the need to examine packet payloads. Classification proceeds in two steps. Classification rules are first built by analyzing traffic traces, and then the classification rules are evaluated using test data. In this paper, we use self-organizing map and K-means clustering as unsupervised machine learning methods to identify the inherent classes in traffic traces. Three clusters were discovered, corresponding to transactional, bulk data transfer, and interactive applications. The K-nearest neighbor classifier was found to be highly accurate for the traffic data and significantly better compared to a minimum mean distance classifier.

Lightweight CNN based Meter Digit Recognition

  • Sharma, Akshay Kumar;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.15-19
    • /
    • 2021
  • Image processing is one of the major techniques that are used for computer vision. Nowadays, researchers are using machine learning and deep learning for the aforementioned task. In recent years, digit recognition tasks, i.e., automatic meter recognition approach using electric or water meters, have been studied several times. However, two major issues arise when we talk about previous studies: first, the use of the deep learning technique, which includes a large number of parameters that increase the computational cost and consume more power; and second, recent studies are limited to the detection of digits and not storing or providing detected digits to a database or mobile applications. This paper proposes a system that can detect the digital number of meter readings using a lightweight deep neural network (DNN) for low power consumption and send those digits to an Android mobile application in real-time to store them and make life easy. The proposed lightweight DNN is computationally inexpensive and exhibits accuracy similar to those of conventional DNNs.

An Improved Intrusion Detection System for SDN using Multi-Stage Optimized Deep Forest Classifier

  • Saritha Reddy, A;Ramasubba Reddy, B;Suresh Babu, A
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.374-386
    • /
    • 2022
  • Nowadays, research in deep learning leveraged automated computing and networking paradigm evidenced rapid contributions in terms of Software Defined Networking (SDN) and its diverse security applications while handling cybercrimes. SDN plays a vital role in sniffing information related to network usage in large-scale data centers that simultaneously support an improved algorithm design for automated detection of network intrusions. Despite its security protocols, SDN is considered contradictory towards DDoS attacks (Distributed Denial of Service). Several research studies developed machine learning-based network intrusion detection systems addressing detection and mitigation of DDoS attacks in SDN-based networks due to dynamic changes in various features and behavioral patterns. Addressing this problem, this research study focuses on effectively designing a multistage hybrid and intelligent deep learning classifier based on modified deep forest classification to detect DDoS attacks in SDN networks. Experimental results depict that the performance accuracy of the proposed classifier is improved when evaluated with standard parameters.

Blockchain-based Federated Learning for Intrusion Detection in IoT Networks (IoT 네트워크에서 침입 탐지를 위한 블록체인 기반 연합 학습)

  • Md Mamunur Rashid;Philjoo Choi;Suk-Hwan Lee;Ki-Ryong Kwon
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.262-264
    • /
    • 2023
  • Internet of Things (IoT) networks currently employ an increased number of users and applications, raising their susceptibility to cyberattacks and data breaches, and endangering our security and privacy. Intrusion detection, which includes monitoring and analyzing incoming and outgoing traffic to detect and prohibit the hostile activity, is critical to ensure cybersecurity. Conventional intrusion detection systems (IDS) are centralized, making them susceptible to cyberattacks and other relevant privacy issues because all the data is gathered and processed inside a single entity. This research aims to create a blockchain-based architecture to support federated learning and improve cybersecurity and intrusion detection in IoT networks. In order to assess the effectiveness of the suggested approach, we have utilized well-known cybersecurity datasets along with centralized and federated machine learning models.