• Title/Summary/Keyword: machine learning applications

Search Result 538, Processing Time 0.03 seconds

A Study of Machine Learning based Face Recognition for User Authentication

  • Hong, Chung-Pyo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.96-99
    • /
    • 2020
  • According to brilliant development of smart devices, many related services are being devised. And, almost every service is designed to provide user-centric services based on personal information. In this situation, to prevent unintentional leakage of personal information is essential. Conventionally, ID and Password system is used for the user authentication. This is a convenient method, but it has a vulnerability that can cause problems due to information leakage. To overcome these problem, many methods related to face recognition is being researched. Through this paper, we investigated the trend of user authentication through biometrics and a representative model for face recognition techniques. One is DeepFace of FaceBook and another is FaceNet of Google. Each model is based on the concept of Deep Learning and Distance Metric Learning, respectively. And also, they are based on Convolutional Neural Network (CNN) model. In the future, further research is needed on the equipment configuration requirements for practical applications and ways to provide actual personalized services.

Comparative Analysis of Machine Learning Techniques for IoT Anomaly Detection Using the NSL-KDD Dataset

  • Zaryn, Good;Waleed, Farag;Xin-Wen, Wu;Soundararajan, Ezekiel;Maria, Balega;Franklin, May;Alicia, Deak
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.46-52
    • /
    • 2023
  • With billions of IoT (Internet of Things) devices populating various emerging applications across the world, detecting anomalies on these devices has become incredibly important. Advanced Intrusion Detection Systems (IDS) are trained to detect abnormal network traffic, and Machine Learning (ML) algorithms are used to create detection models. In this paper, the NSL-KDD dataset was adopted to comparatively study the performance and efficiency of IoT anomaly detection models. The dataset was developed for various research purposes and is especially useful for anomaly detection. This data was used with typical machine learning algorithms including eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and Deep Convolutional Neural Networks (DCNN) to identify and classify any anomalies present within the IoT applications. Our research results show that the XGBoost algorithm outperformed both the SVM and DCNN algorithms achieving the highest accuracy. In our research, each algorithm was assessed based on accuracy, precision, recall, and F1 score. Furthermore, we obtained interesting results on the execution time taken for each algorithm when running the anomaly detection. Precisely, the XGBoost algorithm was 425.53% faster when compared to the SVM algorithm and 2,075.49% faster than the DCNN algorithm. According to our experimental testing, XGBoost is the most accurate and efficient method.

SHM data anomaly classification using machine learning strategies: A comparative study

  • Chou, Jau-Yu;Fu, Yuguang;Huang, Shieh-Kung;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.77-91
    • /
    • 2022
  • Various monitoring systems have been implemented in civil infrastructure to ensure structural safety and integrity. In long-term monitoring, these systems generate a large amount of data, where anomalies are not unusual and can pose unique challenges for structural health monitoring applications, such as system identification and damage detection. Therefore, developing efficient techniques is quite essential to recognize the anomalies in monitoring data. In this study, several machine learning techniques are explored and implemented to detect and classify various types of data anomalies. A field dataset, which consists of one month long acceleration data obtained from a long-span cable-stayed bridge in China, is employed to examine the machine learning techniques for automated data anomaly detection. These techniques include the statistic-based pattern recognition network, spectrogram-based convolutional neural network, image-based time history convolutional neural network, image-based time-frequency hybrid convolution neural network (GoogLeNet), and proposed ensemble neural network model. The ensemble model deliberately combines different machine learning models to enhance anomaly classification performance. The results show that all these techniques can successfully detect and classify six types of data anomalies (i.e., missing, minor, outlier, square, trend, drift). Moreover, both image-based time history convolutional neural network and GoogLeNet are further investigated for the capability of autonomous online anomaly classification and found to effectively classify anomalies with decent performance. As seen in comparison with accuracy, the proposed ensemble neural network model outperforms the other three machine learning techniques. This study also evaluates the proposed ensemble neural network model to a blind test dataset. As found in the results, this ensemble model is effective for data anomaly detection and applicable for the signal characteristics changing over time.

Exploring Support Vector Machine Learning for Cloud Computing Workload Prediction

  • ALOUFI, OMAR
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.374-388
    • /
    • 2022
  • Cloud computing has been one of the most critical technology in the last few decades. It has been invented for several purposes as an example meeting the user requirements and is to satisfy the needs of the user in simple ways. Since cloud computing has been invented, it had followed the traditional approaches in elasticity, which is the key characteristic of cloud computing. Elasticity is that feature in cloud computing which is seeking to meet the needs of the user's with no interruption at run time. There are traditional approaches to do elasticity which have been conducted for several years and have been done with different modelling of mathematical. Even though mathematical modellings have done a forward step in meeting the user's needs, there is still a lack in the optimisation of elasticity. To optimise the elasticity in the cloud, it could be better to benefit of Machine Learning algorithms to predict upcoming workloads and assign them to the scheduling algorithm which would achieve an excellent provision of the cloud services and would improve the Quality of Service (QoS) and save power consumption. Therefore, this paper aims to investigate the use of machine learning techniques in order to predict the workload of Physical Hosts (PH) on the cloud and their energy consumption. The environment of the cloud will be the school of computing cloud testbed (SoC) which will host the experiments. The experiments will take on real applications with different behaviours, by changing workloads over time. The results of the experiments demonstrate that our machine learning techniques used in scheduling algorithm is able to predict the workload of physical hosts (CPU utilisation) and that would contribute to reducing power consumption by scheduling the upcoming virtual machines to the lowest CPU utilisation in the environment of physical hosts. Additionally, there are a number of tools, which are used and explored in this paper, such as the WEKA tool to train the real data to explore Machine learning algorithms and the Zabbix tool to monitor the power consumption before and after scheduling the virtual machines to physical hosts. Moreover, the methodology of the paper is the agile approach that helps us in achieving our solution and managing our paper effectively.

Investigation of the super-resolution methods for vision based structural measurement

  • Wu, Lijun;Cai, Zhouwei;Lin, Chenghao;Chen, Zhicong;Cheng, Shuying;Lin, Peijie
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.287-301
    • /
    • 2022
  • The machine-vision based structural displacement measurement methods are widely used due to its flexible deployment and non-contact measurement characteristics. The accuracy of vision measurement is directly related to the image resolution. In the field of computer vision, super-resolution reconstruction is an emerging method to improve image resolution. Particularly, the deep-learning based image super-resolution methods have shown great potential for improving image resolution and thus the machine-vision based measurement. In this article, we firstly review the latest progress of several deep learning based super-resolution models, together with the public benchmark datasets and the performance evaluation index. Secondly, we construct a binocular visual measurement platform to measure the distances of the adjacent corners on a chessboard that is universally used as a target when measuring the structure displacement via machine-vision based approaches. And then, several typical deep learning based super resolution algorithms are employed to improve the visual measurement performance. Experimental results show that super-resolution reconstruction technology can improve the accuracy of distance measurement of adjacent corners. According to the experimental results, one can find that the measurement accuracy improvement of the super resolution algorithms is not consistent with the existing quantitative performance evaluation index. Lastly, the current challenges and future trends of super resolution algorithms for visual measurement applications are pointed out.

Monitoring moisture content of timber structures using PZT-enabled sensing and machine learning

  • Chen, Lin;Xiong, Haibei;He, Yufeng;Li, Xiuquan;Kong, Qingzhao
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.589-598
    • /
    • 2022
  • Timber structures are susceptible to structural damages caused by variations in moisture content (MC), inducing severe durability deterioration and safety issues. Therefore, it is of great significance to detect MC levels in timber structures. Compared to current methods for timber MC detection, which are time-consuming and require bulky equipment deployment, Lead Zirconate Titanate (PZT)-enabled stress wave sensing combined with statistic machine learning classification proposed in this paper show the advantage of the portable device and ease of operation. First, stress wave signals from different MC cases are excited and received by PZT sensors through active sensing. Subsequently, two non-baseline features are extracted from these stress wave signals. Finally, these features are fed to a statistic machine learning classifier (i.e., naïve Bayesian classification) to achieve MC detection of timber structures. Numerical simulations validate the feasibility of PZT-enabled sensing to perceive MC variations. Tests referring to five MC cases are conducted to verify the effectiveness of the proposed method. Results present high accuracy for timber MC detection, showing a great potential to conduct rapid and long-term monitoring of the MC level of timber structures in future field applications.

Stroke Disease Identification System by using Machine Learning Algorithm

  • K.Veena Kumari ;K. Siva Kumar ;M.Sreelatha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.183-189
    • /
    • 2023
  • A stroke is a medical disease where a blood vessel in the brain ruptures, causes damage to the brain. If the flow of blood and different nutrients to the brain is intermittent, symptoms may occur. Stroke is other reason for loss of life and widespread disorder. The prevalence of stroke is high in growing countries, with ischemic stroke being the high usual category. Many of the forewarning signs of stroke can be recognized the seriousness of a stroke can be reduced. Most of the earlier stroke detections and prediction models uses image examination tools like CT (Computed Tomography) scan or MRI (Magnetic Resonance Imaging) which are costly and difficult to use for actual-time recognition. Machine learning (ML) is a part of artificial intelligence (AI) that makes software applications to gain the exact accuracy to predict the end results not having to be directly involved to get the work done. In recent times ML algorithms have gained lot of attention due to their accurate results in medical fields. Hence in this work, Stroke disease identification system by using Machine Learning algorithm is presented. The ML algorithm used in this work is Artificial Neural Network (ANN). The result analysis of presented ML algorithm is compared with different ML algorithms. The performance of the presented approach is compared to find the better algorithm for stroke identification.

Applications of Machine Learning Models on Yelp Data

  • Ruchi Singh;Jongwook Woo
    • Asia pacific journal of information systems
    • /
    • v.29 no.1
    • /
    • pp.35-49
    • /
    • 2019
  • The paper attempts to document the application of relevant Machine Learning (ML) models on Yelp (a crowd-sourced local business review and social networking site) dataset to analyze, predict and recommend business. Strategically using two cloud platforms to minimize the effort and time required for this project. Seven machine learning algorithms in Azure ML of which four algorithms are implemented in Databricks Spark ML. The analyzed Yelp business dataset contained 70 business attributes for more than 350,000 registered business. Additionally, review tips and likes from 500,000 users have been processed for the project. A Recommendation Model is built to provide Yelp users with recommendations for business categories based on their previous business ratings, as well as the business ratings of other users. Classification Model is implemented to predict the popularity of the business as defining the popular business to have stars greater than 3 and unpopular business to have stars less than 3. Text Analysis model is developed by comparing two algorithms, uni-gram feature extraction and n-feature extraction in Azure ML studio and logistic regression model in Spark. Comparative conclusions have been made related to efficiency of Spark ML and Azure ML for these models.

Feature Analysis for Detecting Mobile Application Review Generated by AI-Based Language Model

  • Lee, Seung-Cheol;Jang, Yonghun;Park, Chang-Hyeon;Seo, Yeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.650-664
    • /
    • 2022
  • Mobile applications can be easily downloaded and installed via markets. However, malware and malicious applications containing unwanted advertisements exist in these application markets. Therefore, smartphone users install applications with reference to the application review to avoid such malicious applications. An application review typically comprises contents for evaluation; however, a false review with a specific purpose can be included. Such false reviews are known as fake reviews, and they can be generated using artificial intelligence (AI)-based text-generating models. Recently, AI-based text-generating models have been developed rapidly and demonstrate high-quality generated texts. Herein, we analyze the features of fake reviews generated from Generative Pre-Training-2 (GPT-2), an AI-based text-generating model and create a model to detect those fake reviews. First, we collect a real human-written application review from Kaggle. Subsequently, we identify features of the fake review using natural language processing and statistical analysis. Next, we generate fake review detection models using five types of machine-learning models trained using identified features. In terms of the performances of the fake review detection models, we achieved average F1-scores of 0.738, 0.723, and 0.730 for the fake review, real review, and overall classifications, respectively.

Design of Music Learning Assistant Based on Audio Music and Music Score Recognition

  • Mulyadi, Ahmad Wisnu;Machbub, Carmadi;Prihatmanto, Ary S.;Sin, Bong-Kee
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.826-836
    • /
    • 2016
  • Mastering a musical instrument for an unskilled beginning learner is not an easy task. It requires playing every note correctly and maintaining the tempo accurately. Any music comes in two forms, a music score and it rendition into an audio music. The proposed method of assisting beginning music players in both aspects employs two popular pattern recognition methods for audio-visual analysis; they are support vector machine (SVM) for music score recognition and hidden Markov model (HMM) for audio music performance tracking. With proper synchronization of the two results, the proposed music learning assistant system can give useful feedback to self-training beginners.