• 제목/요약/키워드: machine learning algorithms

검색결과 1,059건 처리시간 0.022초

Determination of the stage and grade of periodontitis according to the current classification of periodontal and peri-implant diseases and conditions (2018) using machine learning algorithms

  • Kubra Ertas;Ihsan Pence;Melike Siseci Cesmeli;Zuhal Yetkin Ay
    • Journal of Periodontal and Implant Science
    • /
    • 제53권1호
    • /
    • pp.38-53
    • /
    • 2023
  • Purpose: The current Classification of Periodontal and Peri-Implant Diseases and Conditions, published and disseminated in 2018, involves some difficulties and causes diagnostic conflicts due to its criteria, especially for inexperienced clinicians. The aim of this study was to design a decision system based on machine learning algorithms by using clinical measurements and radiographic images in order to determine and facilitate the staging and grading of periodontitis. Methods: In the first part of this study, machine learning models were created using the Python programming language based on clinical data from 144 individuals who presented to the Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University. In the second part, panoramic radiographic images were processed and classification was carried out with deep learning algorithms. Results: Using clinical data, the accuracy of staging with the tree algorithm reached 97.2%, while the random forest and k-nearest neighbor algorithms reached 98.6% accuracy. The best staging accuracy for processing panoramic radiographic images was provided by a hybrid network model algorithm combining the proposed ResNet50 architecture and the support vector machine algorithm. For this, the images were preprocessed, and high success was obtained, with a classification accuracy of 88.2% for staging. However, in general, it was observed that the radiographic images provided a low level of success, in terms of accuracy, for modeling the grading of periodontitis. Conclusions: The machine learning-based decision system presented herein can facilitate periodontal diagnoses despite its current limitations. Further studies are planned to optimize the algorithm and improve the results.

Incorporating Machine Learning into a Data Warehouse for Real-Time Construction Projects Benchmarking

  • Yin, Zhe;DeGezelle, Deborah;Hirota, Kazuma;Choi, Jiyong
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.831-838
    • /
    • 2022
  • Machine Learning is a process of using computer algorithms to extract information from raw data to solve complex problems in a data-rich environment. It has been used in the construction industry by both academics and practitioners for multiple applications to improve the construction process. The Construction Industry Institute, a leading construction research organization has twenty-five years of experience in benchmarking capital projects in the industry. The organization is at an advantage to develop useful machine learning applications because it possesses enormous real construction data. Its benchmarking programs have been actively used by owner and contractor companies today to assess their capital projects' performance. A credible benchmarking program requires statistically valid data without subjective interference in the program administration. In developing the next-generation benchmarking program, the Data Warehouse, the organization aims to use machine learning algorithms to minimize human effort and to enable rapid data ingestion from diverse sources with data validity and reliability. This research effort uses a focus group comprised of practitioners from the construction industry and data scientists from a variety of disciplines. The group collaborated to identify the machine learning requirements and potential applications in the program. Technical and domain experts worked to select appropriate algorithms to support the business objectives. This paper presents initial steps in a chain of what is expected to be numerous learning algorithms to support high-performance computing, a fully automated performance benchmarking system.

  • PDF

Wearable Sensor-Based Biometric Gait Classification Algorithm Using WEKA

  • Youn, Ik-Hyun;Won, Kwanghee;Youn, Jong-Hoon;Scheffler, Jeremy
    • Journal of information and communication convergence engineering
    • /
    • 제14권1호
    • /
    • pp.45-50
    • /
    • 2016
  • Gait-based classification has gained much interest as a possible authentication method because it incorporate an intrinsic personal signature that is difficult to mimic. The study investigates machine learning techniques to mitigate the natural variations in gait among different subjects. We incorporated several machine learning algorithms into this study using the data mining package called Waikato Environment for Knowledge Analysis (WEKA). WEKA's convenient interface enabled us to apply various sets of machine learning algorithms to understand whether each algorithm can capture certain distinctive gait features. First, we defined 24 gait features by analyzing three-axis acceleration data, and then selectively used them for distinguishing subjects 10 years of age or younger from those aged 20 to 40. We also applied a machine learning voting scheme to improve the accuracy of the classification. The classification accuracy of the proposed system was about 81% on average.

머신러닝을 위한 블록형 모듈화 아키텍처 설계 (Design of Block-based Modularity Architecture for Machine Learning)

  • 오유수
    • 한국멀티미디어학회논문지
    • /
    • 제23권3호
    • /
    • pp.476-482
    • /
    • 2020
  • In this paper, we propose a block-based modularity architecture design method for distributed machine learning. The proposed architecture is a block-type module structure with various machine learning algorithms. It allows free expansion between block-type modules and allows multiple machine learning algorithms to be organically interlocked according to the situation. The architecture enables open data communication using the metadata query protocol. Also, the architecture makes it easy to implement an application service combining various edge computing devices by designing a communication method suitable for surrounding applications. To confirm the interlocking between the proposed block-type modules, we implemented a hardware-based modularity application system.

양자컴퓨팅 & 양자머신러닝 연구의 현재와 미래 (Research Trends in Quantum Machine Learning)

  • 방정호
    • 전자통신동향분석
    • /
    • 제38권5호
    • /
    • pp.51-60
    • /
    • 2023
  • Quantum machine learning (QML) is an area of quantum computing that leverages its principles to develop machine learning algorithms and techniques. QML is aimed at combining traditional machine learning with the capabilities of quantum computing to devise approaches for problem solving and (big) data processing. Nevertheless, QML is in its early stage of the research and development. Thus, more theoretical studies are needed to understand whether a significant quantum speedup can be achieved compared with classical machine learning. If this is the case, the underlying physical principles may be explained. First, fundamental concepts and elements of QML should be established. We describe the inception and development of QML, highlighting essential quantum computing algorithms that are integral to QML. The advent of the noisy intermediate-scale quantum era and Google's demonstration of quantum supremacy are then addressed. Finally, we briefly discuss research prospects for QML.

기계학습 알고리즘을 활용한 지역 별 아파트 실거래가격지수 예측모델 비교: LIME 해석력 검증 (Comparative Analysis for Real-Estate Price Index Prediction Models using Machine Learning Algorithms: LIME's Interpretability Evaluation)

  • 조보근;박경배;하성호
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제29권3호
    • /
    • pp.119-144
    • /
    • 2020
  • Purpose Real estate usually takes charge of the highest proportion of physical properties which individual, organizations, and government hold and instability of real estate market affects the economic condition seriously for each economic subject. Consequently, practices for predicting the real estate market have attention for various reasons, such as financial investment, administrative convenience, and wealth management. Additionally, development of machine learning algorithms and computing hardware enhances the expectation for more precise and useful prediction models in real estate market. Design/methodology/approach In response to the demand, this paper aims to provide a framework for forecasting the real estate market with machine learning algorithms. The framework consists of demonstrating the prediction efficiency of each machine learning algorithm, interpreting the interior feature effects of prediction model with a state-of-art algorithm, LIME(Local Interpretable Model-agnostic Explanation), and comparing the results in different cities. Findings This research could not only enhance the academic base for information system and real estate fields, but also resolve information asymmetry on real estate market among economic subjects. This research revealed that macroeconomic indicators, real estate-related indicators, and Google Trends search indexes can predict real-estate prices quite well.

협동로봇의 건전성 관리를 위한 머신러닝 알고리즘의 비교 분석 (Comparative Analysis of Machine Learning Algorithms for Healthy Management of Collaborative Robots)

  • 김재은;장길상;임국화
    • 대한안전경영과학회지
    • /
    • 제23권4호
    • /
    • pp.93-104
    • /
    • 2021
  • In this paper, we propose a method for diagnosing overload and working load of collaborative robots through performance analysis of machine learning algorithms. To this end, an experiment was conducted to perform pick & place operation while changing the payload weight of a cooperative robot with a payload capacity of 10 kg. In this experiment, motor torque, position, and speed data generated from the robot controller were collected, and as a result of t-test and f-test, different characteristics were found for each weight based on a payload of 10 kg. In addition, to predict overload and working load from the collected data, machine learning algorithms such as Neural Network, Decision Tree, Random Forest, and Gradient Boosting models were used for experiments. As a result of the experiment, the neural network with more than 99.6% of explanatory power showed the best performance in prediction and classification. The practical contribution of the proposed study is that it suggests a method to collect data required for analysis from the robot without attaching additional sensors to the collaborative robot and the usefulness of a machine learning algorithm for diagnosing robot overload and working load.

A Study on Comparison of Lung Cancer Prediction Using Ensemble Machine Learning

  • NAM, Yu-Jin;SHIN, Won-Ji
    • 한국인공지능학회지
    • /
    • 제7권2호
    • /
    • pp.19-24
    • /
    • 2019
  • Lung cancer is a chronic disease which ranks fourth in cancer incidence with 11 percent of the total cancer incidence in Korea. To deal with such issues, there is an active study on the usefulness and utilization of the Clinical Decision Support System (CDSS) which utilizes machine learning. Thus, this study reviews existing studies on artificial intelligence technology that can be used in determining the lung cancer, and conducted a study on the applicability of machine learning in determination of the lung cancer by comparison and analysis using Azure ML provided by Microsoft. The results of this study show different predictions yielded by three algorithms: Support Vector Machine (SVM), Two-Class Support Decision Jungle and Multiclass Decision Jungle. This study has its limitations in the size of the Big data used in Machine Learning. Although the data provided by Kaggle is the most suitable one for this study, it is assumed that there is a limit in learning the data fully due to the lack of absolute figures. Therefore, it is claimed that if the agency's cooperation in the subsequent research is used to compare and analyze various kinds of algorithms other than those used in this study, a more accurate screening machine for lung cancer could be created.

URL Filtering by Using Machine Learning

  • Saqib, Malik Najmus
    • International Journal of Computer Science & Network Security
    • /
    • 제22권8호
    • /
    • pp.275-279
    • /
    • 2022
  • The growth of technology nowadays has made many things easy for humans. These things are from everyday small task to more complex tasks. Such growth also comes with the illegal activities that are perform by using technology. These illegal activities can simple as displaying annoying message to big frauds. The easiest way for the attacker to perform such activities is to convenience user to click on the malicious link. It has been a great concern since a decay to classify URLs as malicious or benign. The blacklist has been used initially for that purpose and is it being used nowadays. It is efficient but has a drawback to update blacklist automatically. So, this method is replace by classification of URLs based on machine learning algorithms. In this paper we have use four machine learning classification algorithms to classify URLs as malicious or benign. These algorithms are support vector machine, random forest, n-nearest neighbor, and decision tree. The dataset that is used in this research has 36694 instances. A comparison of precision accuracy and recall values are shown for dataset with and without preprocessing.