디지털기술융합사회에서 문화기술의 중요도가 커지고 있지만, 이에 비해 문화기술의 동향을 정확하게 파악하고 분석하고자 하는 시도가 부족한 실정이다. 특히 문화기술의 경우 국가 차원에서 주도하여 발전해 왔으며, 이에 문화기술을 분석함에 있어 국가적 관점을 견지하는 것이 매우 중요하다. 따라서 본 연구는 국가연구과제를 바탕으로 문화기술 동향을 분석하고 향후 문화기술 발전에 대한 시사점을 제공하는 데 초점을 맞추었다. 본 연구는 국가과학기술정보서비스(NTIS)에서 문화기술 연구과제 데이터를 수집하여 연구내용에 대한 키워드 네트워크를 분석하고, 군집분석을 통해 문화기술 과제를 유형화하고 그 특성을 분석하였다. 분석 결과 문화기술은 정보지식에서 디지털콘텐츠, 문화미디어로 발전하고 최근 머신러닝 기술에 접목하여 활발하게 활용되고 있는 것으로 나타났다. 최근에는 코로나19의 사회적 환경의 변화로 비대면 온라인 콘텐츠에 대한 수요로 AR, VR 등 다양한 문화산업에 대한 연구로 발전하고 있는 것을 확인하였다. 이를 통해 본 연구는 문화기술을 이해하고 그 동향을 분석하여, 문화기술의 혁신 가능성을 확인하기 위한 중요한 단서를 제공하였다.
최근 렌더링을 위한 플랫폼으로 멀티 클라우드 환경이 주목받고 있다. 이는 렌더링의 연산량이 시간에 따라 변동 폭이 큰 반면 각 렌더링 작업은 독립적으로 수행될 수 있기 때문이다. 그러나, 멀티 클라우드 렌더링은 대용량의 렌더링 입력 데이터에 대한 일관성을 유지하면서 실시간으로 데이터를 전송해야 하는 어려운 점이 존재한다. 본 논문에서는 멀티 클라우드 렌더링을 위한 새로운 분산 파일 시스템을 개발하였다. 개발된 파일 시스템은 로컬 머신에 파일 서버를 두어 렌더링 입력 파일에 대한 버전을 관리하고, 클라우드에 캐쉬 관리자를 두어 파일의 버전을 고려한 분산 협력 캐슁을 수행한다. 렌더링 워크로드를 이용한 실측 실험을 통해 개발된 파일 시스템이 NFS 대비 745%의 I/O 처리율을 나타내는 것을 확인했으며, 업로드 방식과 비교할 때 평균 56%의 실행시간 개선이 있는 것으로 확인되었다.
본 연구에서는 콘크리트 구조물의 주요 손상인 균열에 대한 효과적인 점검을 위하여 이미지 처리 기법을 이용한 균열 검출이 가능한 균열 모니터링 자동화 시스템 개발의 일환으로 머신비전을 이용하여 균열 촬영 장비를 제작하고 균열 이미지 촬영 및 분석이 가능한 프로그램을 개발하였다. 본 시스템은 기존의 육안으로 균열을 점검하는 외관조사를 대체하여 객관적이고 정량적인 데이터를 제공한다. 개발 시스템의 검증은 자기치유 콘크리트 수조 시공 현장에 적용하여 균열 검출 및 재령에 따른 균열폭의 변화량을 모니터링하였다. 이미지 분석을 통해 검출된 균열폭의 경우 디지털 현미경을 이용한 실측값과 차이가 최대 0.036 mm로 나타났으며, 자기치유 콘크리트의 재령 경과에 따른 균열 치유 효과를 균열폭 감소를 통해 확인할 수 있었다.
중국에서는 코드 스캔 결제의 지속적인 홍보 및 적용으로 인해 코인 시장의 불균형이 발생되다. 동전 교환기는 이 문제를 완화할 수 있을 뿐만 아니라 상업 은행의 비즈니스 발생에도 적극적인 영향을 미친다. 따라서 동전 교환기를 연구하는 것은 매우 중요하다. 본 연극이 연극목적은 동전 교환기가 중국 상업 은행의 사업에 미치는 영향을 연구하는 것이다. 현장 방문을 통해 수집한 중국 상업 은행의 고객 데이터를 재무 지표 계산 방법과 결합하여 사례 분석을 수행한다. 연구 결과에 따르면 동전 교환기는 중국 상업 은행의 비즈니스 발전에 긍정적인 영향을 미친다. 본 연극는 중국 상업 은행에 대한 타당성 제안 및 비즈니스 개발에 대한 새로운 아이디어를 제공한다. 현재 동전교환기에 대한 연구는 거의 없으며, 본 연구는 재정지표 계산을 결합하여 정책성과를 검증하는 것이 본 연구의 혁신점이다.
본 논문은 CAN(Controller Area Network) 버스에서 해킹에 의한 공격을 탐지하기 위한 랜덤 포레스트 기반 칩입 감지 시스템(RIDS: Random Forest-Based Intrusion Detection)을 제안한다. RIDS는 CAN 버스에서 나타날 수 있는 전형적인 세 가지 공격, 즉 DoS(Denial of Service) 공격, Fuzzing 공격, Spoofing 공격을 탐지하며, 데이터 프레임 사이의 시간 간격과 그 편차, 페이로드끼리의 해밍 거리와 그 편차의 네 가지 파라미터를 사용하여 공격을 판단한다. RIDS는 메모리 중심 방식의 아키텍쳐를 가지며 노드의 정보를 메모리에 저장하여 사용하며 트리의 개수와 깊이만 조절하면 DoS 공격, Fuzzing 공격, Spoofing 공격을 모두 탐지할 수 있도록 확장이 용이한 구조로 설계되었다. 시뮬레이션 결과 RIDS는 정확도 0.9835, F1 점수 0.9545로 세 가지 공격을 효과적으로 탐지할 수 있었다.
층류화염편 라이브러리에 대한 효율적인 계산과정을 개발하기 위하여 초임계 압력조건의 기체수소/액체산소 연소기에 대해 인공신경망을 이용한 기계학습과정이 적용되었다. 학습성능과 계산효율성에 근거한 최적의 계산과정을 찾기 위하여 은닉층에 대한 ReLU와 쌍곡탄젠트 함수의 25가지 조합이 선택되었다. 정확성이 우수한 높은 학습성능을 얻는데 쌍곡탄젠트 활성화함수가 적절하였다. 인공신경망의 학습성능을 개선하기 위해서 학습데이터 변환이 제안되었다. 4개의 은닉층에 최적의 노드를 배치할 때 학습성능 및 계산비용 관점에서 모두 효율적인 것으로 나타났다. 층류화염편 라이브러리의 보간법보다 인공신경망을 사용하는 경우 전체 계산시간은 37%, 시스템 메모리는 99.98% 감소되었다.
엣지 컴퓨팅을 사용하는 서비스 공급업체는 높은 수준의 서비스를 제공한다. 이에 따라 다양하고 중요한 정보들이 단말 장치에 저장되면서 탐지하기 더욱 어려운 최신 사이버 공격의 핵심 목표가 됐다. 보안을 위해 침입 탐지시스템과 같은 보안 시스템이 자주 활용되지만, 기존의 침입 탐지 시스템은 탐지 정확도가 낮은 문제점이 존재한다. 따라서 본 논문에서는 엣지 컴퓨팅에서 단말 장치의 더욱 정확한 침입 탐지를 위한 기계 학습 모델을 제안한다. 제안하는 모델은 희소성 제약을 사용하여 입력 데이터의 중요한 특징 벡터들을 추출하는 stacked sparse autoencoder (SSAE)와 convolutional neural network (CNN)를 결합한 하이브리드 모델이다. 최적의 모델을 찾기 위해 SSAE의 희소성 계수를 조절하면서 모델의 성능을 비교 및 분석했다. 그 결과 희소성 계수가 일 때 96.9%로 가장 높은 정확도를 보여주었다. 따라서 모델이 중요한 특징들만 학습할 경우 더 높은 성능을 얻을 수 있었다.
Background: Like direct infection from COVID-19, psychological concern about infection could affect health. Concern about COVID-19 infection was associated with individual habits to practice rules for preventing infection. Therefore, this study aimed to check occupational types and whether to practice tooth brushing after lunch depending on the occupation of economic workers and find correlations between concerns about infection due to COVID-19 pandemic and tooth brushing after lunch. Methods: The raw data was from the community health survey conducted in 2020. Among 229,269 adult participants aged 19 years and older, 138,970 economic workers were included in the final analysis. The chi-squared test was used to find differences in psychological concerns due to the COVID-19 pandemic. According to the participants, the rate of practicing tooth brushing after lunch was based on COVID-19-related psychological concerns. Multiple logistic regression analysis was conducted to check the influence of psychological concerns due to the COVID-19 pandemic on the rate of practicing tooth brushing after lunch. Results: According to occupational classifications, professionals and office workers and career soldiers had 1.551- and 1.581-times higher practicing rates than managers, respectively, whereas machine operators, agricultural and fishery sector workers, and daily laborers had lower practicing rates. Regarding COVID-19-related psychological concerns, the group with a lower concern about infection had a 1.076 times higher practicing rate than that with greater concern. The group with greater concern about blame from neighbors had 1.119 times higher practicing rate than that with lower concern. Conclusion: The correlations between higher economic workers' concerns about infection and blame from neighbors and higher recognition of the necessity to prevent COVID-19 and practice tooth brushing after lunch were confirmed. It is necessary to prepare measures for practicing tooth brushing after lunch suitable to the characteristics of occupational types and work environments of economic workers.
4차 산업혁명을 주도하는 기술 중 가장 핵심적인 기술로 꼽히고 있는 인공지능은 다양한 분야에 접목되면서 우리 사회 전반에 걸쳐 패러다임의 전환을 가져오고 있다. 바이오 분야 역시 예외는 아니어서 컴퓨터, 전기·전자, 기계 등 타 학문과 융합되면서 방대한 데이터 기반의 AI 기술을 도입하고 있다. 신약개발에서 AI 기술 도입은 신약개발의 효율성을 개선하고 효능 및 품질 향상을 가져올 수 있다. 신약개발은 다학제 분야가 접목된 융합 분야이고 개발 과정 단계별로 결과의 불확실성이 존재하고 있어 실용적 수준의 신약 개발을 위해서는 화학, 생물학, 독성학, 약동학 등 전문지식의 융합을 기반으로 하는 AI 기술 개발이 필요하다. 신약개발은 크게 주어진 질병에 대한 타겟 물질 발굴 및 검증, 히트 및 선도물질 발굴, 도출된 화합물에 대한 합성 가능성 및 효능 등에 대한 평가(Scoring)를 거쳐 최적의 신약 후보 물질을 발굴하고 마지막으로 전임상과 임상 과정의 단계를 거친다. 이때 AI 기술은 모든 단계에서 적용될 수 있고 단계마다 특화되어 적용될 수 있다. 본 논문에서는 신약개발을 위해 적용되고 있는 AI 기술 현황과 현재 기술의 한계를 살펴보고 향후 신약개발에서 AI 기술의 발전 방향을 고찰해 보고자 한다.
In this study, using deep learning, super-resolution images of transmission electron microscope (TEM) images were generated for nanomaterial analysis. 1169 paired images with 256 × 256 pixels (high resolution: HR) from TEM measurements and 32 × 32 pixels (low resolution: LR) produced using the python module openCV were trained with deep learning models. The TEM images were related to DyVO4 nanomaterials synthesized by hydrothermal methods. Mean-absolute-error (MAE), peak-signal-to-noise-ratio (PSNR), and structural similarity (SSIM) were used as metrics to evaluate the performance of the models. First, a super-resolution image (SR) was obtained using the traditional interpolation method used in computer vision. In the SR image at low magnification, the shape of the nanomaterial improved. However, the SR images at medium and high magnification failed to show the characteristics of the lattice of the nanomaterials. Second, to obtain a SR image, the deep learning model includes a residual network which reduces the loss of spatial information in the convolutional process of obtaining a feature map. In the process of optimizing the deep learning model, it was confirmed that the performance of the model improved as the number of data increased. In addition, by optimizing the deep learning model using the loss function, including MAE and SSIM at the same time, improved results of the nanomaterial lattice in SR images were achieved at medium and high magnifications. The final proposed deep learning model used four residual blocks to obtain the characteristic map of the low-resolution image, and the super-resolution image was completed using Upsampling2D and the residual block three times.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.