• Title/Summary/Keyword: machine cell

Search Result 424, Processing Time 0.021 seconds

A heuristic algorithm for forming machine cells and part families in group technology (그룹 테크놀러지에서의 기계 및 부품군을 형성하기 위한 발견적 해법)

  • Ree, Paek
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.4
    • /
    • pp.705-718
    • /
    • 1996
  • A similarity coefficient based algorithm is proposed to solve the machine cells and part families formation problem in group technology. Similarity coefficients are newly designed from the machine-part incidence matrix. Machine cells are formed using a recurrent neural network in which the similarity coefficients are used as connection weights between processing units. Then parts are assigned to complete the cell composition. The proposed algorithm is applied to 30 different kinds of problems appeared in the literature. The results are compared to those by the GRAFICS algorithm in terms of the grouping efficiency and efficacy.

  • PDF

Genetic Algorithm for Designing Independent Manufacturing Cells (독립적인 생산셀 설계를 위한 유전 알고리즘)

  • Moon, Chi-Ung;Yi, Sang-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.3
    • /
    • pp.581-595
    • /
    • 1997
  • The procedure of grouping the machines and parts to form cells is called manufacturing cell design. The manufacturing cell design is an important step in the development and implementation of advanced manufacturing systems. For the successful implementation of the manufacturing systems, identification of independent manufacturing cells, i.e., cells where parts are completely processed in the cell and no intercell movements, is necessary in the design phase. In this paper, we developed a mixed integer programming model and genetic algorithm based procedure to solve the independent manufacturing cells design problem considering the alternative process plans and machines duplication. Several manufacturing parameters such as, production volume, machine capacity, processing time, number of cells and cell size, are considered in the process. The model determines the process plan for parts, port families and machine cells simultaneously. The model has been verified with the numerical examples.

  • PDF

Single Phase Converter Design for Fuel Cell Based Welding Machine (연료전지에 의해 구동되는 용접기용 단상 컨버터 설계)

  • Min, Myoung-Sik;Park, Sang-Hoon;Park, So-Ri;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.624-627
    • /
    • 2008
  • It is generally used the boost converter for the welding machine using fuel cell. But this type generates the duplicate loss between boost converter and inverter. As a result, the whole efficiency is lower than conventional inverter arc welder and the cost is expensive due to additional switching device. Therefore, we proposed the inverter rectification type DC-DC converter with boost converter function in fuel cell based TIG welder. The performance of the proposed technique is evaluated on a 1.2kW fuel cell stack based experimental prototype circuit.

  • PDF

-Manufacturing Cell Formation with Fuzzy Nonlinear Mixed-Integer Programming- (퍼지 비선형 혼합정수계획에 의한 제조셀 형성)

  • 윤연근;남현우;이상완
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.54
    • /
    • pp.65-75
    • /
    • 2000
  • Cellular manufacturing(CM) is a philosophy and innovation to improve manufacturing productivity and flexibility. Cell formation(CF), the first and key problem faced in designing an effective CM system, is a process whereby parts with similar design features or Processing requirements are grouped into part families, and the corresponding machines into machine cells. Cell formation solutions often contain exceptional elements(EEs). EE create interactions between two manufacturing cells. A policy dealing with EEs considers minimizing the total costs of three important costs; (1)intercellular transfer (2)machine duplication and (3)subcontracting. This paper presents an effective cell formation method with fuzzy nonlinear mixed-integer programming simultaneously to form manufacturing cells and to minimize the total costs of eliminating exceptional elements.

  • PDF

A Method of Eliminating Exceptional Elements by Tool Duplication in Cellular Manufacturing System. (셀화 제조를 도입한 FMS에서 공구중복에 의한 예외적 요소의 제거 방법)

  • Chang, Ik;Yoon, Chang-Won;Chung, Byung-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.44
    • /
    • pp.297-309
    • /
    • 1997
  • Exceptional Elements(E.E) are generally eliminated by a machine duplication or a subcontract in cellular manufacturing system. One of the advantages in FMS consists of machines capable of multi-processing. This paper presents a method that eliminates E.Es by tool duplication. First, we develop the exceptional operation similarity(EOS) by machine cell-operation incidence matrix and part-operation incidence matrix. The EOS indicates a similarity of unperformable operations in each part when two exceptional parts are assigned to a machine cell. Secondly, a mathematical model to minimize tool duplication is developed by the EOS. Finally, a heuristic algorithm is developed to reflect dynamic situation in process of elimination of exceptional elements by the EOS and the mathematical model. A numerical example is provided to illustrate the algorithm.

  • PDF

Design of Cellular Layout based on Genetic Algorithm (유전 알고리즘에 기초한 셀 배치의 설계)

  • Lee, Byung-Uk;Cho, Kyu-Kap
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.197-208
    • /
    • 1999
  • This paper presents an operation sequence-based approach for determining machine cell layout in a cellular manufacturing environment. The proposed model considers the sequence of operations in evaluating the intercell and intracell movements. In this paper, design of cellular layout has an objective of minimization of total material flow among facilities, where the total material flow is defined as a weighted sum of both intercell and intracell part movements. The proposed algorithm is developed by using genetic algorithm and can be used to design an optimal cellular layout which can cope with changes of shop floor situation by considering constraints such as the number of machine cells and the number of machines in a machine cell.

  • PDF

Intelligent Diagnosis System for an Electronic Weighting Machine (전자 저울을 위한 지능형 고장 진단 시스템)

  • 김종원;김영구;조현찬;서화일;김두영;이병수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.807-810
    • /
    • 2001
  • Election Weighting Machine is used an electronic scale which has many trouble because of broken load cells. In this paper, we propose an Intelligent Diagnosis System will for an electronic weighting machine using fuzzy logic. It s purpose be detect of the load cell s trouble. The electronic circuit of system, which call junction box , will be connected resistance in a series at circuit of Wheatstone Bridge for monitoring the condition of load cells.

  • PDF

Effects of Blade Configuration on the Performance of Induced Gas Flotation Machine (익형 변화에 따른 유도공기부상기 성능특성 연구)

  • Song, You-Joon;Lee, Ji-Gu;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.41-46
    • /
    • 2017
  • The flotation performance of the induced gas flotation (IGF) machine is considerably influenced by geometric configurations of rotor and stator. The interaction of rotor and stator, which are the most important components in IGF, serves to mix the air bubbles. Thus, the understanding of flow characteristics and consequential analysis on the machine are essential for the optimal design of IGF. In this study, two-phase (water and air) flow characteristics in the forced-air mechanically stirred Dorr-Oliver flotation cell was investigated using ANSYS CFX. In addition, the void fraction and the velocity distributions are determined and presented with different blade configurations.

Constructing a Standard Clinical Big Database for Kidney Cancer and Development of Machine Learning Based Treatment Decision Support Systems (신장암 표준임상빅데이터 구축 및 머신러닝 기반 치료결정지원시스템 개발)

  • Song, Won Hoon;Park, Meeyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1083-1090
    • /
    • 2022
  • Since renal cell carcinoma(RCC) has various examination and treatment methods according to clinical stage and histopathological characteristics, it is required to determine accurate and efficient treatment methods in the clinical field. However, the process of collecting and processing RCC medical data is difficult and complex, so there is currently no AI-based clinical decision support system for RCC treatments worldwide. In this study, we propose a clinical decision support system that helps clinicians decide on a precision treatment to each patient. RCC standard big database is built by collecting structured and unstructured data from the standard common data model and electronic medical information system. Based on this, various machine learning classification algorithms are applied to support a better clinical decision making.

Development of a hard bearing type balancing machine (강성 베어링형 밸런실 장치의 개발)

  • 권이석;이동환;박중윤;홍성욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.773-777
    • /
    • 1994
  • This paper is devoted to the development and performance evaluation of a hard bearing type balancing machine for rigid rotors. The pedestals of the balancing machine are designed to be rigid to be rigid enough to enable the balancing to operate far below the fundamental critical speed. The force measuring method is implemented to the balancing machine. The forces due to unbalance are measured through load cell that are attached to the pedestals. A helical coupling is used for transmitting the driving force from an AC servo motor to the rotor to be balanced. The experimental results show that the current hard bearing type balancing machine can indicate the presence of unbalance beyond 1 .mu. m in specific unbalance unit. The limitation of the current balancing machine is due to the coupling that is likely to make inconsistent offset errors everytime the rotor is connected to the machine.

  • PDF