• Title/Summary/Keyword: mPW1PW91

Search Result 13, Processing Time 0.021 seconds

Oxidative Desulfurization of Marine Diesel Using Keggin Type Heteropoly Acid Catalysts (Keggin형 헤테로폴리산 촉매를 이용한 선박용 경유의 산화 탈황)

  • Oh, Hyeonwoo;Woo, Hee Chul
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.91-97
    • /
    • 2019
  • Oxidative desulfurization (ODS) has received much attention in recent years because refractory sulfur compounds such as dibenzothiophenes can be oxidized selectively to their corresponding sulfoxides and sulfones, and these products can be removed by extraction and adsorption. In this work, The oxidative desulfurization of marine diesel fuel was performed in a batch reactor with hydrogen peroxide ($H_2O_2$) in the presence of various supported heteropoly acid catalysts. The catalysts were characterized by XRD, XRF, XPS and nitrogen adsorption isotherm techniques. Based on the sulfur removal efficiency of promising silica supported heteropoly acid catalysts, the ranking of catalytic activity was: $30\;H_3PW_{12}/SiO_2$ > $30\;H_3PMo_{12}/SiO_2$ > $30\;H_4SiW_{12}/SiO_2$, which appears to be related with their intrinsic acid strength. The $30\;H_3PW_{12}/SiO_2$ catalyst showed the highest initial sulfur removal efficiency of about 66% under reaction conditions of $30^{\circ}C$, $0.025g\;mL^{-1}$ (cat./oil), 1 h reaction time. However, through the recycle test of the $H_3PW_{12}/SiO_2$ catalyst, significant deactivation was observed, which was attributed to the elution of the active component $H_3PW_{12}$. By introducing cesium cation ($Cs^+$) into the $H_3PW_{12}/SiO_2$ catalyst, the stability of the catalyst was improved with changing the solubility, and the $Cs^+$ ion exchanged catalyst could be recycled for at least five times without severe elution.

The Effect of Exchange and Correlation on Properties of Carbon Nanotube Structure: A DFT study (탄소 나노 튜브 구조의 특성에 대한 교환과 상관 효과: DFT 연구)

  • Bakhshi, K.;Mollaamin, F.;Monajjemi, M.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • As an aid towards improving the treatment of exchange and correlation effects in electronic structure calculations, it is desirable to have a clear picture of concepts of exchange-correlation functionals in computational calculations. For achieving this aim, it is necessary to perform different theoretical methods for many groups of materials. We have performed hybrid density functional theory (DFT) methods to investigate the density charges of atoms in rings and cages of carbon nanotube. DFT methods are engaged and compared their results. We have also been inclined to see the impression of exchange and correlation on nuclearnuclear energy and electron-nuclear energy and kinetic energy. With due attention to existence methods, B3P86, B3PW91, B1B96, BLYP and B3LYP have used in this work.

Conformations and Vibrational Frequencies of a Precursor of Benzovesamicol Analogues Studied by Density Functional Theories

  • Park, Jong-Kil;Choe, Sang Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2311-2316
    • /
    • 2014
  • Conformations and vibrational frequencies of the racemic (2RS,3RS)-5-amino-3-(4-phenylpiperazin-1-yl)-1,2,3,4-tetrahydronaphthalen-2-ol-(I) [(2RS,3RS)-(I)], a precursor of benzovesamicol analogues, have been carried out using various DFT methods (M06-2X, B3LYP, B3PW91, PBEPBE, LSDA, and B3P86) with basis sets of 6-31G(d), 6-31+G(d,p), 6-311+G(d,p), 6-311++G(d,p), cc-pVTZ, and TZVP. The LSDA/6-31G(d) level of theory shows the best performance in reproducing the X-ray powder structure. However, the PBEPBE/cc-pVTZ level of theory is the best method to predict the vibrational frequencies of (2RS,3RS)-(I). The potential energy surfaces of racemic pairs (2RS,3RS)-(I) and -(II) are obtained at the LSDA/6-31G(d) level of theory in the gas phase and in water. The results indicate that (2RS,3RS)-(I) are more stable by ~0.75 kcal/mol in energy than (2RS,3RS)-(II) in water, whereas conformer AIIg and BIIg are more stable by ~0.04 kcal/mol than AIg in gas phase. In particular, the hydrogen bond distances between the N of piperazine and the OH of tetrahydronaphthalen become longer in gas, compared with those in the water phase. Vibrational frequencies calculated at the PBEPBE/cc-pVTZ level of theory in the gas phase are larger than those in water, whereas their intensities in the gas phase are weaker than those in water.