• 제목/요약/키워드: lysosome

검색결과 142건 처리시간 0.024초

3T3 세포에 의한 피브로인 마이크로스피어의 흡수 (Uptake of Fibroin Microspheres by 3T3 Cells)

  • 이진실;고남경;이신영;허원
    • KSBB Journal
    • /
    • 제29권5호
    • /
    • pp.328-335
    • /
    • 2014
  • Vehicle toxicity is one of the main obstacles for intracellular delivery of bioactive compounds. Silk fibroin is a natural polymer proven to have high biocompatibility since being used as suture material. In this report, fibroin microspheres were prepared without any chemical modification or cross-linking not to affect its biocompatibility. The microspheres were taken up by more than 90% of 3T3 cells. Cellular uptake continued after medium replenishment with a different-colored fluorescent microsphere, suggesting that simultaneous ingestion and exocytosis occurred. Cellular uptake of fibroin microspheres did not affect cell viability. Intracellular trafficking of the microspheres using lysosome-specific fluorescent dye revealed that fibroin microspheres were localized both in the cytoplasm and in the lysosome. Accordingly, fibroin microspheres can be a potential vehicle for intracytoplasmic delivery of large cargos, such as mixtures of proteins, nutrients or artificial organelles.

Fine Structure of Diapause Regulator Cell in the Suboesophageal Ganglion in the Silkworm, Bombyx Mori

  • Park, Kwang E.
    • 한국잠사곤충학회지
    • /
    • 제13권2호
    • /
    • pp.99-107
    • /
    • 1971
  • 전자현미경관찰에 의하여 가잠의 식도하신경구에서 휴면요인세포(diapause factor cell)에 어떤 정보를 주는 것으로 생각되는 휴면조절세포(diapause regulator producing cell)를 발견하였다. 휴면조절세포의 과립은 이 세포가 부분적으로 둘러싸고 있는 휴면요인세포의 과립의 직경보다 크며(직경 .2,000∼5,000A), 휴면란을 산란하는 개체의 휴면조절세포에서는 전자밀도가 높은 리소좀이 관찰되었으나, 비휴면란을 산란하는 개체에서는 이것이 관찰되지 않았다. 다수의 세포질과립이 리소좀과 결합되었다가 소형의 과립으로 되어 리소좀으로부터 나오는 것이 발견되었다. 휴면요인세포와 휴면조절세포에 대하여 논하였다.

  • PDF

Endocytic Regulation of EGFR Signaling

  • Chung, Byung-Min
    • Interdisciplinary Bio Central
    • /
    • 제4권2호
    • /
    • pp.3.1-3.7
    • /
    • 2012
  • Epidermal growth factor receptor (EGFR) is a member of the ErbB family (ErbB1-4) of receptor tyrosine kinases (RTKs). EGFR controls numerous physiological functions, including cell proliferation, migration, differentiation and survival. Importantly, aberrant signaling by EGFR has been linked to human cancers in which EGFR and its various ligands are frequently overexpressed or mutated. EGFR coordinates activation of multiple downstream factors and is subject of various regulatory processes as it mediates biology of the cell it resides in. Therefore, many studies have been devoted to understanding EGFR biology and targeting the protein for the goal of controlling tumor in clinical settings. Endocytic regulation of EGFR offers a promising area for targeting EGFR activity. Upon ligand binding, the activated receptor undergoes endocytosis and becomes degraded in lysosome, thereby terminating the signal. En route to lysosome, the receptor becomes engaged in activating various signaling pathways including PI-3K, MAPK and Src, and endocytosis may offer both spatial and temporal regulation of downstream target activation. Therefore, endocytosis is an important regulator of EGFR signaling, and increasing emphasis is being placed on endocytosis in terms of cancer treatment and understanding of the disease. In this review, EGFR signaling pathway and its intricate regulation by endocytosis will be discussed.

Identification of Receptor-like Protein for Fructose-1,6-bisphosphatase on Yeast Vacuolar Membrane

  • Ko, Je-Sang
    • BMB Reports
    • /
    • 제33권6호
    • /
    • pp.448-453
    • /
    • 2000
  • In yeast the key gluconeogenic enzyme, fructose-1,6-bisphosphatase (FBPase), is selectively targeted from the cytosol to the lysosome (vacuole) for degradation when glucose starved cells are replenished with glucose. The pathway for glucose induced FBPase degradation is unknown. To identify the receptor-mediated degradation pathway of FBPase, we investigated the presence of the FBPase receptor on the vacuolar membrane by cell fractionation experiments and binding assay using vid mutant (vacuolar import and degradation), which is defective in the glucose-induced degradation of FBPase. FBPase sedimented in the pellets from vid24-1 mutant after centrifugation at $15,000{\times}g$ for 15 min, suggesting that FBPase is associated with subcellular structures. Cell fractionation experiments revealed that FBPase is preferentially associated with the vacuole, but not with other organelles in vid24-1. FBPase enriched fractions that cofractionated with the vacuole were sensitive to proteinase K digestion, indicating that FBPase is peripherally associated with the vacuole. We developed an assay for the binding of FBPase to the vacuole. The assay revealed that FBPase bound to the vacuole with a Kd of $2.3{\times}10^6M$. The binding was saturable and specific. These results suggest that a receptor for FBPase degradation exists on the vacuolar membrane. It implies the existence of the receptor-mediated degradation pathway of FBPase by the lysosome.

  • PDF

Lysosomal acid phosphatase mediates dedifferentiation in the regenerating salamander limb

  • Ju, Bong-Gun;Kim, Won-Sun
    • Animal cells and systems
    • /
    • 제14권2호
    • /
    • pp.73-81
    • /
    • 2010
  • In this study, monoclonal antibodies against lysosomal acid phosphatase (LAP) of a salamander, Hynobius leechii, were used to determine the spatial and temporal expression of the LAP in the regenerating limbs. The Western blot and immunohistochemical analysis in the limb regeneration revealed that LAP was highly expressed at the dedifferentiation stage, especially in the wound epidermis and dedifferentiating limb tissues such as muscle and cartilage. With RA treatment, the LAP expression became upregulated in terms of both level and duration in the wound epidermis, blastemal cell and dedifferentiating limb tissues. In addition, in situ activity staining of LAP showed a similar result to that of immunohistochemistry. Thus, the activity profile of LAP activity coincides well with the expression profile of LAP during the dedifferentiation period. Furthermore, to examine the effects of lysosomal enzymes including LAP on salamander limb regeneration, lysosome extract was microinjected into limb regenerates. Interestingly, when the lysosome extract was microinjected into limb regenerates with a low dose of RA($50\;{\mu}g/g$ body wt.), skeletal pattern duplication occurred frequently in the proximodistal and transverse axes. Therefore, lysosomal enzymes might cause the regenerative environment and RA plays dual roles in the modification of positional value as well as evocation of extensive dedifferentiation for pattern duplication. In conclusion, these results support the hypothesis that dedifferentiation is a crucial event in the process of limb regeneration and RA-evoked pattern duplication, and lysosomal enzymes may play important role(s) in this process.

MiT Family Transcriptional Factors in Immune Cell Functions

  • Kim, Seongryong;Song, Hyun-Sup;Yu, Jihyun;Kim, You-Me
    • Molecules and Cells
    • /
    • 제44권5호
    • /
    • pp.342-355
    • /
    • 2021
  • The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.

난백(Egg White)에서 추출한 리소좀 추출물(LOE)의 미백 효능 및 피부장벽에 관한 연구 (Study on the Whitening Efficacy and Skin Barrier by Lysosome-related Organelle Extract (LOE) from Egg White)

  • 최다희;전경찬;윤지희;민지호;박시준;김정수;황이택;황형서
    • 대한화장품학회지
    • /
    • 제45권4호
    • /
    • pp.389-397
    • /
    • 2019
  • 리소좀(lysosome)은 진핵세포에서 에너지 대사 및 세포 내 소화 작용에 관여하는 세포 소기관으로 protease, nuclease, glycosidase, lipase, phosphatase 들이 다수 존재한다. 우리는 선행 연구결과들을 통해 난백 리소좀의 멜라닌 색소 탈색능을 보고하였다[8]. 그러나 B16F10 melanocyte 세포주에서 난백 리소좀에 의한 멜라닌 함량 변화 및 피부장벽 조절 연구는 거의 보고되지 않았다. 따라서 우리는 계란 난백(egg white)으로부터 추출한 lysosome-related organelle extract (LOE)에 의한 세포 내 멜라닌 함량 변화 및 피부장벽 강화 효과를 규명하고자 하였다. 먼저 LOE의 미백 효능을 확인하기 위해 B16F10 세포주를 이용하여 세포독성 평가를 진행하였다. B16F10 세포주에서 LOE에 의한 세포독성은 0에서 20 mg/mL 농도에서 관찰되지 않았으나, 40 mg/mL 부터 세포독성이 관찰되어 이후 모든 실험에서 최대 농도값을 20 mg/mL로 설정하였다. 먼저 LOE를 이용한 melanin contents assay 결과, 음성 대조군인 α-MSH 처리군 대비 LOE 처리군 5, 10, 20 mg/mL 농도에서 61.5 ± 4.0%, 61.4 ± 7.3%, 58.3 ± 8.3%로 세포 내 멜라닌 함량이 감소되는 것을 확인하였고, 20 mg/mL 농도 조건에서 MITF 발현 억제도 관찰하였다. LOE의 피부 장벽에 미치는 영향을 관찰하기 위해 각질형성세포주(HaCaT)를 이용하여 TEER (trans-epithelial electrical resistance) assay를 수행한 결과, LOE에 의해 농도 의존적으로 TEER 저항값이 증가하여 LOE가 피부장벽 강화에도 효과가 있음을 알 수 있었다. 또한 피부 염증 유발을 위한 TNF-α 처리조건에서도 LOE는 TEER 저항값을 증가시켜 염증 유발 조건에서도 LOE에 의해 피부장벽이 정상적으로 회복되었음을 알 수 있었다. 마지막으로 cell migration assay를 통해 LOE에 의한 세포이동 촉진 효과를 관찰한 결과, LOE는 세포분열 및 세포이동을 촉진시켰다. 위 결과들을 통해 LOE는 미백 기능 뿐 아니라 피부재생 및 피부장벽 강화에도 효과를 나타내는 소재이며, 효소안정화 및 제형화 기술이 접목된다면 향후 새로운 미백 기능성 화장품 소재로도 개발될 수 있을 것이다.

Involvement of Lysosome Membrane Permeabilization and Reactive Oxygen Species Production in the Necrosis Induced by Chlamydia muridarum Infection in L929 Cells

  • Chen, Lixiang;Wang, Cong;Li, Shun;Yu, Xin;Liu, Xue;Ren, Rongrong;Liu, Wenwen;Zhou, Xiaojing;Zhang, Xiaonan;Zhou, Xiaohui
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권4호
    • /
    • pp.790-798
    • /
    • 2016
  • Chlamydiae, obligate intracellular bacteria, are associated with a variety of human diseases. The chlamydial life cycle undergoes a biphasic development: replicative reticulate bodies (RBs) phase and infectious elementary bodies (EBs) phase. At the end of the chlamydial intracellular life cycle, EBs have to be released to the surrounded cells. Therefore, the interactions between Chlamydiae and cell death pathways could greatly influence the outcomes of Chlamydia infection. However, the underlying molecular mechanisms remain elusive. Here, we investigated host cell death after Chlamydia infection in vitro, in L929 cells, and showed that Chlamydia infection induces cell necrosis, as detected by the propidium iodide (PI)-Annexin V double-staining flow-cytometric assay and Lactate dehydrogenase (LDH) release assay. The production of reactive oxygen species (ROS), an important factor in induction of necrosis, was increased after Chlamydia infection, and inhibition of ROS with specific pharmacological inhibitors, diphenylene iodonium (DPI) or butylated hydroxyanisole (BHA), led to significant suppression of necrosis. Interestingly, live-cell imaging revealed that Chlamydia infection induced lysosome membrane permeabilization (LMP). When an inhibitor upstream of LMP, CA-074-Me, was added to cells, the production of ROS was reduced with concomitant inhibition of necrosis. Taken together, our results indicate that Chlamydia infection elicits the production of ROS, which is dependent on LMP at least partially, followed by induction of host-cell necrosis. To our best knowledge, this is the first live-cell-imaging observation of LMP post Chlamydia infection and report on the link of LMP to ROS to necrosis during Chlamydia infection.

담즙산 분비과정에 관여하는 흰쥐 간세포내 소기관에 관한 세포화학적 연구 (A Cytochemical Study on the Vacuolar Apparatus Participating in the Transport of Bile Acids in the Rat Hepatocytes (Cytochemical Study on the Vacuolar Apparatus for Bile Acid Transport))

  • 신영철
    • Applied Microscopy
    • /
    • 제28권2호
    • /
    • pp.171-180
    • /
    • 1998
  • 본 연구에서는 dehydrocholic acid를 투여한 흰쥐 간세포의 vacuolar apparatus를 세포화학적으로 관찰하고자 하였다. 박절편에서 Golgi 장치의 형성면 수조는 소낭상으로 팽대된 부분이 열지어 있었으며 어떤것은 돌출되어 있었다. 이러한 소낭 모양의 돌출부는 용해소체 표면에서도 관찰되었다. 소포들은 Golgi 장치의 형성면 수조와 용해소채 및 담세관 주위에서 볼 수 있었으며 소포가 담세관에 융합되어 있는 것도 관찰되었다. 이러한 소견들은 dehydrocholic acid 투여 후 20분이 경과된 흰쥐에서 현저하였다. 정상군이나 실험군에서 거의 모든 Golgi 장치의 형성면은 담세관을 향하고 있었다. 박절편에서 Golgi 장치의 형성면 수조와 소낭 모양의 돌출부 및 소포는 가시물질을 거의 함유하고 있지 않았다. Osmium은 이들구조에서 심하게 침착되어 있었다. 용해소체와 그 주위에 있는 소포에서는 acid phosphatase 활성이 나타났다. 그러나 담세관 주위에 있는 소포에서는 osmium의 침착이나 acid phosphatase 활성이 경하게 나타나거나 관찰되지 않았다. 이러한 증거들로 미루어 소포는 Golgi 장치의 형성면과 용해소체에서 유래되며 이들소포가 담세관에 융합됨으로서 담즙산이 분비될 것으로 생각된다. 그러나 소포가 담세관에 접근해 감에 따라 소포의 효소활성은 저하되는 것 같이 보인다.

  • PDF