• 제목/요약/키워드: lycopene cyclase

검색결과 5건 처리시간 0.016초

Overexpression and Characterization of Lycopene Cyclase (CrtY) from Marine Bacterium Paracoccus haeundaensis

  • Jeong, Tae Hyug;Ji, Keunho;Kim, Young Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권2호
    • /
    • pp.144-148
    • /
    • 2013
  • Lycopene cyclase converts lycopene to ${\beta}$-carotene by catalyzing the formation of two beta-rings at each end of the linear carotene structure. This reaction takes place as a two-step reaction in which both sides of of the lycopene molecule are cyclized into ${\beta}$-carotene rings via the monocyclic ${\gamma}$-carotene as an intermediate. The crtY gene coding for lycopene cyclase from Paracoccus haeundaensis consists of 1,158 base pairs encoding 386 amino acids residues. An expression plasmid containing the crtY gene (pET44a-CrtY) was constructed and expressed in Escherichia coli, and produced a recombinant protein of approximately 43 kDa, corresponding to the molecular mass of lycopene cyclase. The expressed protein was purified to homogeneity by His-tag affinity chromatography and showed enzymatic activity corresponding to lycopene cyclase. We also determined the lycopene substrate specificity and NADPH cofactor requirements of the purified protein. The $K_m$ values for lycopene and NADPH were 3.5 ${\mu}M$ and 2 mM, respectively. The results obtained from this study will provide a wider base of knowledge on the enzyme characterization of lycopene cyclase at the molecular level.

Proteomic Analysis of Protein Expression Patterns Associated with Astaxanthin Accumulation by Green Alga Haematococcus pluvialis (Chlorophyceae) Under High Light Stress

  • Kim Jeong-Dong;Lee Woo-Sung;Kim Beob-Min;Lee Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1222-1228
    • /
    • 2006
  • Two kinds of Haematococcus pluvialis cells (green vegetative cells cultivated under optimal cell culture conditions and red cyst cells maintained under high light stress conditions to induce astaxanthin production) were used to investigate the protein expression profiles by two-dimensional electrophoresis, image analysis, and peptide mass fingerprinting. The cellular accumulation of astaxanthin was evident after exposure to high light intensity and reached the maximum cellular level after 78 h of high light stress. In a 2-D electrophoresis analysis, 22 proteins were upregulated over 2-fold in the red cyst cells when compared with the green vegetative cells and selected for further analysis by chemically assisted fragmentation (CAF)-MALDI-TOF sequencing to identify the protein functions. Among 22 different spots, several key enzymes specific to the carotenoid pathway, including isopentenyl pyrophosphate isomerase (IPP) and lycopene $\beta$-cyclase, appeared in H. pluvialis after exposure to high light intensity. Therefore, IPP and lycopene $\beta$-cyclase would appear to be involved with carotenoid accumulation in the cytoplasm, as these peptides were preferentially upregulated by high light intensity preceding an increase in carotenoid, and only these forms were detected in the red cyst cells.

토마토 과색 돌연변이 유전자(old-gold-crimson) 선발을 위한 dCAPS 분자표지 개발 (A Gene-based dCAPS Marker for Selecting old-gold-crimson (ogc) Fruit Color Mutation in Tomato)

  • 박영훈;이용재;강점순;최영환;손병구
    • 생명과학회지
    • /
    • 제19권1호
    • /
    • pp.152-155
    • /
    • 2009
  • old-gold-crimson ($og^c$) 과색 돌연변이는 라이코펜의 함량이 증가된 진붉은색 토마토 과실을 생산한다. 이러한 돌연변이는 토마토의 carotenoid 생합성경로에 관여하여 라이코펜을 ${\beta}$-carotene으로 전환시키는 라이코펜 ${\beta}$-cyclase (Crt-b) 유전자(B)에 point mutation을 일으켜 정상적인 효소생성을 저해한다. 높은 함량의 라이코펜을 생성시키는 토마토 품종개발은 유전자 연관 DNA 마커를 이용한 분자표지이용선발(MAS)을 통해 가속화 될 수 있다. $og^c$ 돌연변이는 라이코펜 ${\beta}$-cyclase(Crt-b) 유전자 내 poly-A 서열반복 지점에서 adenine (A) 단일 뉴클레오티드의 결손에 의한 frame-shift mutation에 의해 일어나며, 이러한 대립유전자의 운영과 검증을 위해 $og^c$ 대립유전자로부터 합성되는 PCR 산물에 Hin fI 제한효소 인식부위가 인위적으로 생성되도록 PCR 프라이머에 단일 뉴클레오티드 mismatch 부위를 만들어 dCAPS 마커를 개발하였다. 본 dCAPS 마커는 유전자 유래의 공우성 PCR 마커로서 고함량 라이코펜 토마토개발을 위한 육종 프로그램의 MAS에 효과적으로 사용될 수 있다.

DsLCYB Directionally Modulated β-Carotene of the Green Alga Dunaliella salina under Red Light Stress

  • Yanhong Lan;Yao Song;Yihan Guo;Dairong Qiao;Yi Cao;Hui Xu
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권12호
    • /
    • pp.1622-1631
    • /
    • 2022
  • Carotenoids, which are natural pigments found abundantly in wide-ranging species, have diverse functions and high industrial potential. The carotenoid biosynthesis pathway is very complex and has multiple branches, while the accumulation of certain metabolites often affects other metabolites in this pathway. The DsLCYB gene that encodes lycopene cyclase was selected in this study to evaluate β-carotene production and the accumulation of β-carotene in the alga Dunaliella salina. Compared with the wild type, the transgenic algal species overexpressed the DsLCYB gene, resulting in a significant enhancement of the total carotenoid content, with the total amount reaching 8.46 mg/g for an increase of up to 1.26-fold. Interestingly, the production of α-carotene in the transformant was not significantly reduced. This result indicated that the regulation of DsLCYB on the metabolic flux distribution of carotenoid biosynthesis is directional. Moreover, the effects of different light-quality conditions on β-carotene production in D. salina strains were investigated. The results showed that the carotenoid components of β-carotene and β-cryptoxanthin were 1.8-fold and 1.23-fold higher than that in the wild type under red light stress, respectively. This suggests that the accumulation of β-carotene under red light conditions is potentially more profitable.

Evaluation of DNA Markers for Fruit-related Traits and Genetic Relationships Based on Simple Sequence Repeat in Watermelon Accessions

  • Jin, Bingkui;Park, Girim;Choi, Youngmi;Nho, Jaejong;Son, Beunggu;Park, Younghoon
    • 원예과학기술지
    • /
    • 제35권1호
    • /
    • pp.108-120
    • /
    • 2017
  • Modern watermelon cultivars (Citrullus lanatus [Thunb.] Matsum.& Nakai var. lanatus) have fruits with diverse phenotypes, including fruit shape, rind patterns, and flesh color. Molecular markers enable efficient selection of plants harboring desirable phenotypes. In the present study, publicly available DNA markers tightly linked to fruit shape, rind stripe pattern, and flesh color were evaluated using 85 watermelon accessions with diverse fruit phenotypes. For fruit shape, the dCAPS SUN - Cla011257 marker revealed an 81% of marker - trait match for accessions with elongated or round fruits. For rind stripe pattern, the SCAR wsb6-11marker was effective for selecting Jubilee-type rind pattern from other rind patterns. For flesh color, the Clcyb.600 and Lcyb markers derived from a mutation in the Lycopene ${\beta}$ - cyclase (Lcyb) gene, were effective at selecting red or yellow flesh. Forty-eight accessions possessing diverse fruit - related traits were selected as a reference array and their genetic relationships assessed using 16 SSR markers. At a coefficient of 0.11, the 48 accessions grouped into two major clades: Clade I and Clade II. Clade I subdivided further into subclades I - 1 and I - 2 at a coefficient of 0.39. All accessions with colored flesh were classified into Clade I, whereas those with white - flesh were classified into Clade II. Differences in fruit traits between subclades I - 1 and I - 2 were observed for rind pattern and fruit color; a majority of the accessions with Crimson-type striped or non-striped rind were grouped together in subclade I - 1, while most accessions in subclade I - 2 had a Jubilee - type rind stripe pattern. These results imply that reference array watermelon accessions possess distinguishable genetic structure based on rind stripe pattern. However, no significant grouping pattern was observed based on other fruit-related traits.