• 제목/요약/키워드: lyapunov

검색결과 1,468건 처리시간 0.021초

입력 토크 포화를 갖는 로봇 매니퓰레이터에 대한 분산 강인 적응 제어 (Decentralized Robust Adaptive Control for Robot Manipulators with Input Torque Saturation)

  • 신진호
    • 제어로봇시스템학회논문지
    • /
    • 제21권12호
    • /
    • pp.1160-1166
    • /
    • 2015
  • This paper proposes a decentralized robust adaptive control scheme for robot manipulators with input torque saturation in the presence of uncertainties. The control system should consider the practical problems that the controller gain coefficients of each joint may be nonlinear time-varying and the input torques applied at each joint are saturated. The proposed robot controller overcomes the various uncertainties and the input saturation problem. The proposed controller is comparatively simple and has no robot model parameters. The proposed controller is adjusted by the adaptation laws and the stability of the control system is guaranteed by the Lyapunov function analysis. Simulation results show the validity and robustness of the proposed control scheme.

영구 자석형 동기모터 속도제어를 위한 비선형 슬라이딩 매니폴드 설계 (Velocity Control of Permanent Magnet Synchronous Motors Using Nonlinear Sliding Manifold)

  • 길정환;신동훈;이영우;정정주
    • 제어로봇시스템학회논문지
    • /
    • 제21권12호
    • /
    • pp.1136-1141
    • /
    • 2015
  • In this paper, we develop a sliding mode controller that uses a nonlinear sliding manifold for the permanent magnet synchronous motor. The proposed controller makes sure that both currents and velocity tracking error converge into equilibria. Nonlinear sliding manifold consists of current dynamics and nonlinear functions which are designed with velocity tracking error and its integrated term. The nonlinear functions are designed to guarantee that velocity tracking error converge into zero. The closed-loop stability is proven by Lyapunov theory. The effectiveness of proposed method is demonstrated by numerical simulation results.

Observer-based Fault Tolerant Control for Constrained Switched Systems

  • Yang, Hao;Jiang, Bin;Cocquempot, Vincent
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권6호
    • /
    • pp.707-711
    • /
    • 2007
  • An observer-based fault tolerant control (FTC) method is proposed for constrained switched systems (CSS) with input constraints. A family of Lyapunov-based bounded controllers are designed to ensure that, whenever actuator faults occur at the dwell time period of each continuous mode, the mode is always within its corresponding stability region. A set of switching laws are designed to guarantee the asymptotic stability of the overall CSS. The fixed stability regions on which the FTC method is based are also relaxed by the proposed variable stability regions. An example of CPU processing illustrates the effectiveness of proposed method.

Direct Adaptive Fuzzy Control with Less Restrictions on the Control Gain

  • Phan, Phi Anh;Gale, Timothy J.
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권6호
    • /
    • pp.621-629
    • /
    • 2007
  • In the adaptive fuzzy control field for affine nonlinear systems, there are two basic configurations: direct and indirect. It is well known that the direct configuration needs more restrictions on the control gain than the indirect configuration. In general, these restrictions are difficult to check in practice where mathematical models of plant are not available. In this paper, using a simple extension of the universal approximation theorem, we show that the only required constraint on the control gain is that its sign is known. The Lyapunov synthesis approach is used to guarantee the stability and convergence of the closed loop system. Finally, examples of an inverted pendulum and a magnet levitation system demonstrate the theoretical results.

Control of Rigid Robots Equipped with Brushed DC-Motors as Actuators

  • Hernandez-Guzman, Victor M.;Santibanez, Victor;Herrera, Gilberto
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권6호
    • /
    • pp.718-724
    • /
    • 2007
  • We extend the application of an adaptive controller previously introduced in the literature under the assumption that no actuator dynamics exists to the case when the dynamics of the brushed DC-motors used as actuators is not neglected. Convergence to the desired positions is ensured without requiring any feedback to cope with the additional electric dynamics. The proposed control scheme does not require the exact knowledge of neither robot nor actuator parameters to select controller gains.

모델 불확실성을 가지는 로봇 시스템을 위한 지능형 슬라이딩 모드 제어 (Intelligent Sliding Mode Control for Robots Systems with Model Uncertainties)

  • 유성진;최윤호;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.1014-1021
    • /
    • 2008
  • This paper proposes an intelligent sliding mode control method for robotic systems with the unknown bound of model uncertainties. In our control structure, the unknown bound of model uncertainties is used as the gain of the sliding controller. Then, we employ the function approximation technique to estimate the unknown nonlinear function including the width of boundary layer and the uncertainty bound of robotic systems. The adaptation laws for all parameters of the self-recurrent wavelet neural network and those for the reconstruction error compensator are derived from the Lyapunov stability theorem, which are used for an on-line control of robotic systems with model uncertainties and external disturbances. Accordingly, the proposed method can not only overcome the chattering phenomenon in the control effort but also have the robustness regardless of model uncertainties and external disturbances. Finally, simulation results for the five-link biped robot are included to illustrate the effectiveness of the proposed method.

영상 자코비안 및 동특성 불확실성을 포함하는 로봇 매니퓰레이터의 영상기반 강인제어 (Image-based Robust Control of Robot Manipulators with Image Jacobian and Dynamics Uncertainties)

  • 김진수;모은종;이강웅
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.1047-1052
    • /
    • 2008
  • In this paper, we design an image-based robust controller to compensate uncertainties with image Jacobian and robot dynamics due to uncertain depth measurement and load variations. The proposed controller with eye-in-hand structure has separate terms to compensate each of uncertainties. The ultimate boundedness of the closed-loop system is proved by the Lyapunov approach. The performance of the proposed control system is demonstrated by simulation and experimental results a 5-link robot manipulator with two degree of freedom.

반능동 제어 시스템을 이용한 사장케이블의 진동제어 (Vibration Control of Stay Cables Using Semiactive Control System)

  • 장지은;정형조;윤우현;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.57-64
    • /
    • 2004
  • Stay cables, such as are used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. Several methods have been proposed and implemented to mitigate this problem, though each has its limitations. Recently some studies have shown that semiactive dampers can potentially achieve performance levels nearly the same as comparable active devices with few of the detractions. This paper presents the results of a study to evaluate the performance of semiactive dampers for mitigating the vibration of stay cables. Moreover, a number of recently proposed semiactive control algorithms are formulated for use with shear mode MR damper to compare the efficiency of each algorithm through numerical simulation. Numerical simulation considers a stay cable excited by shaker and controlled by shear mode MR dampers. In simulation, the response with a semiactive damper is found to be dramatically reduced compared to the uncontrolled case. Furthermore, it is verified that the algorithm based on Lyapunov control theory is very efficient in mitigating the cable vibration.

  • PDF

지진하중을 받는 구조물의 수정된 분산뱅뱅 제어기법을 이용한 MR Damper 제어 (Modified Decentralized Bang-Bang Control Seismically Excited Structures Using MR Dampers)

  • Cho, Sang-Won;Kim, Byung-Wan;Kim, Woon-Hak;Lee, In-Won
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.417-423
    • /
    • 2002
  • Magnetorheological(MR) 댐퍼는 적은 용량의 전력을 사용하고 반응속도가 빠른 장점 때문에 구조물의 내진제어에 적당하여, 근래에 주목받고 있는 새로운 장치이다. MR 댐퍼는 반능동 제어 장치로써, 능동 질량감쇠기와는 다른 특성을 갖는다. 즉 필요한 제어력을 제어신호로 직접 생성해 낼 수 없는 대신에 MR 댐퍼의 입력전원을 제어하여 간접적으로 제어한다. 따라서 MR 댐퍼의 반능동 제어장치로써의 특성을 고려하는 효과적인 제어기법이 요구된다. 그러므로 본 연구에서는 지진에 대한 구조물의 응답을 줄이기 위해서, MR댐퍼를 제어할 수 있는 반능동 제어기법을 Lyapunov 안정성 이론을 바탕으로 제안하고자 한다. 제안방법을 검증하기 위해, 전단형 MR 댐퍼를 1층과 2층에 설치한 수치예제를 수행하였다.

  • PDF

이동로봇의 퍼지 데드존 보상 (FL Deadzone Compensation of a Mobile robot)

  • 장준오
    • 전자공학회논문지
    • /
    • 제50권4호
    • /
    • pp.191-202
    • /
    • 2013
  • 이동로봇의 역학 제어기와 퍼지 데드존 보상기가 결합된 제어구조를 제안한다. 데드존 보상이 적응적이고 추적오차와 파라미터 추정치가 유계가 되는 퍼지논리 파라미터 동조알고리듬과 안정도 증명을 제시한다. 퍼지논리 데드존 보상기를 이동로봇에 시뮬레이션 및 실험함으로써 데드존의 해로운 영향을 줄이는 효과를 보여준다.