• Title/Summary/Keyword: lyapunov

Search Result 1,468, Processing Time 0.027 seconds

Asymptotic Stability of Discrete Time Linear Systems with Time Varying Delays (시변시간지연을 갖는 이산시간 선형시스템의 점근안정도)

  • Song, Seong-Ho;Kim, Jeom-Keun;Kang, Chang-Ik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.580-585
    • /
    • 1999
  • This paper deals with the stability of discrete time linear systems with time varying delays in state. In this paper, the magnitude of time-varying delays is assumed to be upper-bouded. The stability of discrete time linear systems with time-varying delays in state is related with the stability of discrete time linear systems with constant time delay in state. To show this, a new Lyapunov function is proposed. Using this Lyapunov function, a sufficient condition for the asymptotic stability is derived.

  • PDF

Design of a Controller Using Successive Approximation for Weakly Copled Bilinear Systems (연속적 근사화 방법을 이용한 쌍일차 정규섭동 시스템의 최적제어기 설계)

  • Chang, Jae-Won;Lee, Sang-Yup;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1999-2001
    • /
    • 2001
  • The infinite time optimum to regulate the problem of weakly coupled bilinear systems with a quadratic performance criterion is obtained by a sequence of algebraic Lyapunov equations. The new approach is based on the successive approximations. In particular, the order reduction is achieved by using suitable state transformation so that the original Lyapunov equations are decomposed into the reduced-order local Lyapunov equations. The proposed algorithms not only solve optimal control problems in the weakly coupled bilinear system but also reduce the computation time. This paper also includes an example to demonstrate the procedures.

  • PDF

A New Augmented Lyapunov Functional Approach to Robust Stability Criteria for Uncertain Fuzzy Neural Networks with Time-varying Delays (시변 지연이 존재하는 불확실 퍼지 뉴럴 네트워크의 강인 안정성 판별법에 대한 새로운 리아프노프 함수법)

  • Kwon, Oh-Min;Park, Myeong-Jin;Park, Ju-Hyun;Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2119-2130
    • /
    • 2011
  • This paper proposes new delay-dependent robust stability criteria for neural networks with time-varying delays. By construction of a suitable Lyapunov-Krasovskii's (L-K) functional and use of Finsler's lemma, new stability criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.

Improved Stability and Stabilization for Sampled-data Control System via Augmented Lyapunov-Krasovskii Functional (합성된 리아프노프 함수법을 통한 샘플링 된 데이터 제어 시스템의 향상된 안정화 조건 및 제어기 설계)

  • Lee, Chang-Ho;Lee, Seung-Hoon;Park, Myeong-Jin;Kwon, Oh-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.127-136
    • /
    • 2017
  • This paper investigates improved stability and stabilization criteria for sampled-data control systems. By using a suitable and newly constructed augmented Lyapunov-Krasovskii functional and some recent mathematic techniques such as auxiliary function-based integral inequalities, sufficient conditions for stability and stabilization conditions are derived within the framework of linear matrix inequalities(LMI) form. The superiority and validity of the proposed results are illustrated by three numerical examples.

Chaotic Predictability for Time Series Forecasts of Maximum Electrical Power using the Lyapunov Exponent

  • Park, Jae-Hyeon;Kim, Young-Il;Choo, Yeon-Gyu
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.369-374
    • /
    • 2011
  • Generally the neural network and the Fuzzy compensative algorithms are applied to forecast the time series for power demand with the characteristics of a nonlinear dynamic system, but, relatively, they have a few prediction errors. They also make long term forecasts difficult because of sensitivity to the initial conditions. In this paper, we evaluate the chaotic characteristic of electrical power demand with qualitative and quantitative analysis methods and perform a forecast simulation of electrical power demand in regular sequence, attractor reconstruction and a time series forecast for multi dimension using Lyapunov Exponent (L.E.) quantitatively. We compare simulated results with previous methods and verify that the present method is more practical and effective than the previous methods. We also obtain the hourly predictability of time series for power demand using the L.E. and evaluate its accuracy.

Stability Analysis and Control of the Electro-Hydraul System for Steering of the Unmaned Container Transporter(UCT) (무인 컨테이너 운반차량의 조향을 위한 전기-유압 시스템의 안정도 분석 및 해석)

  • 최재영;윤영진;허남;이영진;이만형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.371-374
    • /
    • 1999
  • This paper present the nonlinear control and the Lyapunov analysis of the nonlinear electro-hydraulic system for steering control of UCT. Electro-hydraulic system itself has the high nonlinearities arisen from the nonlinear characteristics of the pressure-fluid flow in valve and friction in cylinder. These nonlinearities are unmodeled terms in the transfer function. This paper presents the system modeling, analysis of stability based on the Lyapunov function and simulation of the nonlinear hydraulic servo system.

  • PDF

Stabilization of Switched Linear Systems (선형 스위칭 시스템의 안정화)

  • Yeom, Dong-Hae;Im, Ki-Hong;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.13-15
    • /
    • 2004
  • In this paper, we propose a novel stability criterion and a guideline of controller design for switched linear systems. Unlike existing criterions such as Lie algebraic method and multiple Lyapunov functions method, the proposed criterion can be applied to each individual system without considering an overall system. By applying the proposed criterion to each individual system separately, a state feedback controller can be easily designed. Stability of the overall system is proved by developing a rule to determine non-increasing Lyapunov functions recursively at each switching instant. An illustrative example is given.

  • PDF

Boundary Control of Container Cranes as an Axially Moving String System (축방향으로 이동하는 현의 경계제어)

  • Park, Hahn;Hong, Keum-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.387-392
    • /
    • 2004
  • The control objectives in this paper are to move the gantry of a container crane to its target position and to suppress the transverse vibration of the payload. The crane system is modeled as an axially moving string equation, in which control inputs are applied at both ends, through the gantry and the payload. The dynamics of the moving string are derived using Hamilton's principle for systems with changing mass. The Lyapunov function method is used in deriving a boundary control law, in which the Lyapunov function candidate is introduced from the total mechanical energy of the system. The performance of the proposed control law is compared with other two control algorithms available in the literature. Experimental results are given.

  • PDF

Controller Design for Continuous-Time Takagi-Sugeno Fuzzy Systems with Fuzzy Lyapunov Functions : LMI Approach

  • Kim, Ho-Jun;Joo, Young-Hoon;Park, Jin-Bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.187-192
    • /
    • 2012
  • This paper is concerned with stabilization problem of continuous-time Takagi-Sugeno fuzzy systems. To do this, the stabilization problem is investigated based on the new fuzzy Lyapunov functions (NFLFs). The NFLFs depend on not only the fuzzy weighting functions but also their first-time derivatives. The stabilization conditions are derived in terms of linear matrix inequalities (LMIs) which can be solved easily by the Matlab LMI Toolbox. Simulation examples are given to illustrate the effectiveness of this method.

Calculation and Comparison of Maximum Lyapunov Exponent in Different Direction: An Approach to human Gait Stability

  • Dinesh, Paudel
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.24-29
    • /
    • 2021
  • Objective: The goal of this study is to calculate and compare the Maximum Lyapunov Exponent (MLE) for the anteroposterior, mediolateral and vertical displacement of the markers attached to bony land marks of the trunk and foot. Method: Ten young and healthy male subjects (age: 26.5±3.27 years, height: 167.44±5.12 cm, and weight 69.5±7.36) participated in the study. Three-dimensional positional coordinate of eight different trunk and foot marker during walking on tread mill were analysed. Results: MLE values for anteroposterior displacement of the marker were found to be significantly different with MLE values for mediolateral and vertical displacement whereas MLE values for mediolateral displacement of the marker shows no significant difference with the MLE values for vertical displacement of the markers at significance level 0.05. Conclusion: Finding of this study suggest that it is essential to consider the displacement in all three direction to examine the real characteristic of a gait signal.