• Title/Summary/Keyword: lutetium-177

Search Result 6, Processing Time 0.017 seconds

Comparative in vivo biodistributions of nanoparticles and polymers of 177lutetium-labeled hyaluronic acids in mice during 28 days

  • Lin, Chunmei;Jeong, Ju-Yeon;Yon, Jung-Min;Park, Seul Gi;Gwon, Lee Wha;Lee, Jong-Geol;Baek, In-Jeoung;Nahm, Sang-Soep;Lee, Beom Jun;Yun, Young Won;Nam, Sang-Yoon
    • Korean Journal of Veterinary Research
    • /
    • v.57 no.2
    • /
    • pp.105-111
    • /
    • 2017
  • Hyaluronic acid (HA) has been investigated for biomedical and pharmaceutical applications. This study was conducted to determine the distributions of HA nanoparticles (NPs; size 350-400 nm) and larger HA polymers in mice at intervals after application. $^{177}Lutetium$ (Lu)-labeled HA-NPs or HA polymers were intravenously injected (5 mg/kg) into male ICR mice, and radioactivity levels in blood and target organs were measured from 0.25 h to 28 days post-injection. In blood, the radioactivities of HA-NPs and HA polymer peaked at 0.5 h after injection but were remarkably decreased at 2 h; subsequently, they maintained a constant level until 6 days post-injection. HA-NPs and HA polymers were observed in the liver, spleen, lung, kidney, and heart (in ascending order) but were seldom observed in other organs. After 3 days, both the HA-NP and HA polymer levels showed similar steady decreases in lung, kidney, and heart. However, in liver and spleen, the HA-NP levels tended to decrease gradually after 1 day and both were very low after 14 days, whereas the HA polymer level accumulated for 28 days. The results indicate that HA-NPs, with their faster clearance pattern, may act as a better drug delivery system than HA polymers, especially in the liver and spleen.

표면 고정화된 홍합 모방성 접착성 고분자를 이용한 폐수 정제

  • Lee, Mi-Hyeon;Hong, Seon-Gi;Lee, Hae-Sin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.86-87
    • /
    • 2012
  • 폴리도파민이 다양한 표면을 개질할 수 있다는 것이 보고된 이래로, 폴리도파민을 이용한 다양한 응용 연구들이 계속되어 왔다. 본 연구에서는 이러한 폴리도파민을 이용하여 다양한 물질들로 오염된 물을 간단하고 효과적으로 정제하는 방법을 보고한다. 마이크로 크기의 실리카 비드에 폴리도파민을 코팅하여 흡착제로 사용하였으며, 이 흡착제가 다양한 중금속(Cu, Cr, Hg, Pb), 유기물질(4-Aminopyridine), 방사성 동위원소(Lutetium-177)를 효과적으로 흡착함을 확인하였다.

  • PDF

Antibacterial Activity Evaluation of Radioisotope Lu-177 with a Modified Tube on Plate Core (중심부에 주입구가 존재하는 플레이트를 통한 방사성동위원소의 항균능력 측정)

  • Joh, Eun-Ha
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.4
    • /
    • pp.469-471
    • /
    • 2013
  • In this study, we measured the anti-bacterial activity of radioisotope Lu-177 using a new laboratory instrument. The disk method used for the measurement of existing anti-bacterial antibiotics is drug diffusion into the medium. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading and the present invention was thus tested. In the medium, a space isolated separately for radioisotope injection was used to prevent the radioisotope from spreading and radioisotopes are actually injected by this system. We found that the antibacterial activity increased according to the radiation dose increases. It is expected that, through the present study, measuring the antibacterial activity of the other radioisotopes easily in the laboratory will be possible.

Preparation and Bioevaluation of 177Lu-labelled Anti-CD44 for Radioimmunotherapy of Colon Cancer

  • Lee, SoYoung;Hong, YoungDon;Jung, SungHee;Choi, SunJu
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.187-192
    • /
    • 2015
  • CD44 is a particular adhesion molecule and facilitates both cell-cell and cell-matrix interactions. In particular, splice variants of CD44 are particularly overexpressed in a large number of malignancies and carcinomas. In this study, the $^{177}Lu$-labelled CD44 targeting antibody was prepared and bioevaluated in vitro and in vivo. Anti-CD44 was immunoconjugated with the equivalent molar ratio of cysteine-based DTPA-NCS and radioimmunoconjugated with $^{177}Lu$ at room temperature within 15 minutes. The stability was tested in human serum. An in vitro study was carried out in HT-29 human colon cancer cell lines. For the biodistribution study $^{177}Lu$-labelled anti-CD44 was injected in xenograft mice. Anti-CD44 was immunoconjugated with cysteine-based DTPA-NCS and purified by a centricon filter system having a molecular cut-off of 50 kDa. Radioimmunoconjugation with $^{177}Lu$ was reacted for 15 min at room temperature. The radiolabeling yield was >99%, and it was stable in human serum without any fragmentation or degradation. The radioimmunoconjugate showed a high binding affinity on HT-29 colon cancer cell surfaces. In a biodistribution study, the tumor-to-blood ratio of the radioimmunoconjugate was 43 : 1 at 1 day post injection (p.i) in human colon cancer bearing mice. The anti-CD44 monoclonal antibody for the targeting of colon cancer was effectively radioimmunoconjugated with $^{177}Lu$. The in vitro high immunoactivity of this radioimmunoconjugate was determined by a cell binding assay. In addition, the antibody's tumor targeting ability was demonstrated with very high uptake in tumors. This radioimmunoconjugate is applicable to therapy in human colon cancer with highly expressed CD44.

In vivo comparison of Lu-177-labeled phosphonate compounds as potential agents for bone pain palliation in rodents

  • Chang, Young Soo;Lee, Yun-Sang;Kim, Young Ju;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • Lutetium-177 ($T_{1/2}=6.71day$) is an adequate radionuclide for therapy, which has both beta emission ($E_{max}=497keV$) for therapeutic effect and gamma emission (113 and 208 keV) for imaging. $^{177}Lu$ labeled ethylenediamine-N,N,N',N'-tetrakis (methylene phosphonic acid) (EDTMP) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminomethylenephosphonate (DOTMP) have been proposed as radiopharmaceuticals for bone pain palliation. In this study, we compared radiochemistry and biodistribution of $^{177}Lu$-EDTMP and $^{177}Lu$-DOTMP. EDTMP and DOTMP were synthesized, and 1 mg of each was labeled with $^{177}Lu$ at pH 7~8 with high efficiency (>98%). For comparative biodistribution studies, $^{177}Lu$-EDTMP or $^{177}Lu$-DOTMP were injected into ICR-mice through tail vein, and then biodistribution data were obtained as percentages of injected dose per gram of tissue (% ID/g). Urine excretions of both agents in mice were checked for 7 days. Rat images were also obtained after injection of $^{177}Lu$-EDTMP or $^{177}Lu$-DOTMP. $^{177}Lu$-DOTMP (100% at 1 min) showed faster labeling than $^{177}Lu$-EDTMP (100% at 30 min). Both of them were stable at least for 21 days at room temperature. High bone uptakes were found for both $^{177}Lu$-EDTMP and $^{177}Lu$-DOTMP: 38.0 and 34.1% ID/g at 3 hr, respectively; and 33.2 and 18.8% ID/g at 7 day, respectively. Rapid excretions to urine were found for both agents ($^{177}Lu$-EDTMP: 56%, $^{177}Lu$-DOTMP: 63% at 1 day). Other organs showed very low uptakes. Rat images of both $^{177}Lu$-EDTMP and $^{177}Lu$-DOTMP showed high bone uptakes and low soft tissue uptakes. In conclusion, both $^{177}Lu$-EDTMP and $^{177}Lu$-DOTMP showed high potential as bone pain palliation agents. $^{177}Lu$-EDTMP showed higher bone uptake and slower bone clearance in mice than those of $^{177}Lu$-DOTMP.

Dosimetric Analysis of a Phase I Study of PSMA-Targeting Radiopharmaceutical Therapy With [177Lu]Ludotadipep in Patients With Metastatic Castration-Resistant Prostate Cancer

  • Seunggyun Ha;Joo Hyun O;Chansoo Park;Sun Ha Boo;Ie Ryung Yoo;Hyong Woo Moon;Dae Yoon Chi;Ji Youl Lee
    • Korean Journal of Radiology
    • /
    • v.25 no.2
    • /
    • pp.179-188
    • /
    • 2024
  • Objective: 177Lutetium [Lu] Ludotadipep is a novel prostate-specific membrane antigen targeting therapeutic agent with an albumin motif added to increase uptake in the tumors. We assessed the biodistribution and dosimetry of [177Lu]Ludotadipep in patients with metastatic castration-resistant prostate cancer (mCRPC). Materials and Methods: Data from 25 patients (median age, 73 years; range, 60-90) with mCRPC from a phase I study with activity escalation design of single administration of [177Lu]Ludotadipep (1.85, 2.78, 3.70, 4.63, and 5.55 GBq) were assessed. Activity in the salivary glands, lungs, liver, kidneys, and spleen was estimated from whole-body scan and abdominal SPECT/CT images acquired at 2, 24, 48, 72, and 168 h after administration of [177Lu]Ludotadipep. Red marrow activity was calculated from blood samples obtained at 3, 10, 30, 60, and 180 min, and at 24, 48, and 72 h after administration. Organand tumor-based absorbed dose calculations were performed using IDAC-Dose 2.1. Results: Absorbed dose coefficient (mean ± standard deviation) of normal organs was 1.17 ± 0.81 Gy/GBq for salivary glands, 0.05 ± 0.02 Gy/GBq for lungs, 0.14 ± 0.06 Gy/GBq for liver, 0.77 ± 0.28 Gy/GBq for kidneys, 0.12 ± 0.06 Gy/GBq for spleen, and 0.07 ± 0.02 Gy/GBq for red marrow. The absorbed dose coefficient of the tumors was 10.43 ± 7.77 Gy/GBq. Conclusion: [177Lu]Ludotadipep is expected to be safe at the dose of 3.7 GBq times 6 cycles planned for a phase II clinical trial with kidneys and bone marrow being the critical organs, and shows a high tumor absorbed dose.