• Title/Summary/Keyword: luminescence properties

Search Result 482, Processing Time 0.024 seconds

PL characteristics of silicon-nanocrystals as a function of temperature (온도에 따른 실리콘 나노결정 PL 특성)

  • Kim, Kwang-Hee;Kim, Kwang-Il;Kwon, Young-Kyu;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.93-93
    • /
    • 2003
  • Photoluminescence(PL) properties of Silicon nanocrystals (nc-Si) as a function of temperature is reported to consider the mechanism of PL. Nc-Si has been made by $Si^+$ ion-implantation into thermal $SiO_2$ and subsequent annealing. And after gold had been diffused at the same samples above, the resultant PL spectra has been compared to the PL spectra from the non-gold doped nc-Si. PL peak energy variation from nc-Si is same with the variation of energy bandgap of bulk silicon as temperature changes from 6 K to room temperature. This result may mean nc-Si is still indirect transition material like bulk silicon. Gold doped nc-Si reveals short peak wavelength of PL spectrum than gold undoped one. PL peak shift through gold doing process shows clearly the PL mechanism is not from defect or interface states. PL intensity increases from 6K to a certain temperature and then decrease to room temperature. This characteristic with temperature shows that phonon have a role for the luminescence as theory explains that electron and hole can be recombined radiatively by phonon's assist in nc-Si, which is almost impossible in bulk silicon. Therefore luminescence is observed in nc-Si constructed less than a few of unit cell and the peak energy of luminescence can be higher than the bulk bandgap energy by the bandgap widening effect occurs in nanostructure.

  • PDF

Binding Modes of New Bis-Ru(II) Complexes to DNA: Effect of the Length of the Linker

  • Kwon, Byung-Hyang;Choi, Byung-Hoon;Lee, Hyun-Mee;Jang, Yoon-Jung;Lee, Jae-Cheol;Kim, Seog-K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1615-1620
    • /
    • 2010
  • Bis-[dipyrido[3,2-$\alpha$:2',3'-c]phenazine)$_2$(1,10-phenanthroline)$_2Ru_2$]$^{2+}$ complexes (bis-Ru(II) complexes) tethered by linkers of various lengths were synthesized and their binding properties to DNA investigated by normal absorption and linear dichroism spectra, and fluorescence techniques in this study. Upon binding to DNA, the bis-Ru(II) complex with the longest linker (1,3-bis-(4-pyridyl)-propane), exhibited a negative $LD^r$ signal whose intensity was as large as that in the DNA absorption region, followed by a complicate $LD^r$ signal in the metal-to-ligand charge transfer region. The luminescence intensity of this bis-Ru(II) complex was enhanced. The observed $LD^r$ and luminescence results resembled that of the [Ru(1,10-phenanthroline)$_2$ dipyrido[3,2-$\alpha$:2',3'-c]phenazine]$^{2+}$ complex, whose dipyrido[3,2-$\alpha$:2',3'-c]phenazine (dppz) ligand has been known to intercalate between DNA bases. Hence, it is conclusive that both dppz ligands of the bis-Ru(II) complex intercalate. The binding stoichiometry, however, was a single intercalated dppz per ~ 2.3 bases, which violates the "nearest binding site exclusion" model for intercalation. The length between the two Ru(II) complexes may be barely long enough to accommodate one DNA base between the two dppz ligands, but not for two DNA bases. When the linker was shorter (4,4'-bipyridine or 1,2-bis-(4-pyridyl)-ethane), the magnitude of the LD in the dppz absorption region, as well as the luminescence intensity of both bis-Ru(II) complexes, was half that of the bis-Ru(II) complex bearing a long linker. This observation can be elucidated by a model whereby one of the dppz ligands intercalates while the other is exposed to the aqueous environment.

Luminescence Characterization of SrAl2O4:Ho3+ Green Phosphor Prepared by Spray Pyrolysis (분무열분해법으로 제조된 SrAl2O4:Ho3+ 녹색 형광체의 발광특성)

  • Jung, Kyeong Youl;Kim, Woo Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.620-626
    • /
    • 2015
  • $Ho^{3+}$ doped $SrAl_2O_4$ upconversion phosphor powders were synthesized by spray pyrolysis, and the crystallographic properties and luminescence characteristics were examined by varying activator concentrations and heattreatment temperatures. The effect of organic additives on the crystal structure and luminescent properties was also investigated. $SrAl_2O_4:Ho^{3+}$ powders showed intensive green emission due to the $^5F_4/^5S_2{\rightarrow}^5I_8$ transition of $Ho^{3+}$. The optimal $Ho^{3+}$ concentration in order to achieve the highest luminescence was 0.1%. Over this concentration, emission intensities were largely diminished via a concentration quenching due to dipole-dipole interaction between activator ions. According to the dependence of emission intensity on the pumping power of a laser diode, it was clear that the upconversion of $SrAl_2O_4:Ho^{3+}$ occurred via the ground state absorption-excited state absorption processes involving two near-IR photons. Synthesized powders were monoclinic as a major phase, having some hexagonal phase. The increase of heat-treatment temperatures from $1000^{\circ}C$ to $1350^{\circ}C$ led to crystallinity enhancement of monoclinic phase, reducing hexagonal phase. The hexagonal phase, however, did not disappear even at $1350^{\circ}C$. When both citric acid (CA) and ethylene glycol (EG) were added to the spray solution, the resulting powders had pure monoclinic phase without forming hexagonal phase, and led to largely enhancement of crystallinity. Also, N,N-Dimethylformamide (DMF) addition to the spray solution containing both CA and EG made it possible to effectively reduce the surface area of $SrAl_2O_4:Ho^{3+}$ powders. Consequently, the $SrAl_2O_4:Ho^{3+}$ powders prepared by using the spray solution containing CA/EG/DMF mixture as the organic additives showed about 168% improved luminescence compared to the phosphor prepared without organic additives. It was concluded that both the increased crystallinity of high-purity monoclinic phase and the decrease of surface area were attributed to the large enhancement of upconversion luminescence.

The Band Edge Liminescence of SUrface Modified CdSe Nanocrystallites and Their Applications

  • Lee, Jin-Kyu;Kuno, Masaru K.;Bawendi, Moungi G.
    • Journal of Photoscience
    • /
    • v.5 no.4
    • /
    • pp.175-179
    • /
    • 1998
  • In this paper, a brief overview of nanocrystallites of metal and semi-conductor materials will be presented, and then the novel synthetic method of high quality CdSe nanocrystallites developed by Bawendi group at MIT will be introduced . It will be shown that results of optical properties of surface modified nanocrystallites give the evidence that the luminescence of CdSe nanocrystallites is not originated from surface related trap states, but from intrinsic spin forbidden core states. Some of the interesting applications of CdSe nano-crystallites will also be discussed at the end.

  • PDF

Phosphors development for LED and PDP Applications

  • Park, Hee-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.368-369
    • /
    • 2003
  • The recent development of InGaN-based white light emitting diodes (LEDs) has expanded their potential applications in areas such as white electric home appliances, backlight for mobile phone or notebook PC, and indoor lightings. In this lecture, recent researches related to the phosphors for LEDs applications and their luminescent properties were reviewed. PDPs are considered as the most potential flat panel displays with a large-screen size. Phosphors in PDPs directly affect the brightness and lifetime. So, many researchers have tried to improve the luminescence characteristics of the phosphors especially under vacuum ultraviolet (VUV) excitation. We overviewed recent research trends and conclusive achievements for the PDP phosphors.

  • PDF

Optical properties of EDF codoped with Au nanoparticles

  • Lon, Aoxiang;Kim, Bok-Hyeon;Han, Won-Taek
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.02a
    • /
    • pp.38-39
    • /
    • 2007
  • We report on the luminescent enhancement of the $Er^{3+}$ -doped germano-silicate fibers by the incorporation of Au nanoparticles in the core of the fibers. The absorption peak appeared at 498.4nm was found due to the surface plasmon resonance of Au nanoparticles. The incorporated Au nanoparticles were found to be effective absorbents for hydroxyl groups to enhance the luminescence of $Er^{3+}$ ions when pumped with the 980nm laser diode.

  • PDF

Detection of Organic Halide by Using cis,cis-1,2,3,4-Tetraphenylbutadiene thin Film (cis,cis-1,2,3,4-Teteraphenylbutadiene 박막 필름을 이용한 유기 할로겐 화합물 감지)

  • Park, Jaehyun
    • Journal of Integrative Natural Science
    • /
    • v.3 no.4
    • /
    • pp.215-218
    • /
    • 2010
  • cis,cis-1,2,3,4-Tetraphenylbutadiene has been synthesized and its optical properties are investigated by using UV-Vis absorption and fluorescence spectroscopy. Thin films of tetraphenylbutadiene prepared from thin layer chromatography(TLC) displays strong luminescence and used for the detection of vapor of organic halide. Tetraphenylbutadiene shows dramatic quenching photoluminescence under exposure of chloroform vapor.