• Title/Summary/Keyword: lower limb

Search Result 916, Processing Time 0.03 seconds

A Study of Characteristics of Foot Pressure Distribution in Trans-tibial Amputee Subjects (하퇴 의지 사용자의 족저압 분포 특성에 관한 연구)

  • Kim, Jang-Hwan;Cynn, Heon-Seock
    • Physical Therapy Korea
    • /
    • v.8 no.3
    • /
    • pp.1-10
    • /
    • 2001
  • The purpose of this study was to compare the static pressure, dynamic pressure, dynamic pressure-time integral, relative impulse, and contact time between the sound lower limb and amputated lower limb in trans-tibial amputee subjects using Parotec system. Seventeen trans-tibial amputee subjects wearing endoskeletal trans-tibial prosthesis voluntarily participated in this study. The results were as follows: 1) In static standing condition, there were significantly higher static pressure in sound lower limb insole sensor of 10, 14, 15, 18, 19, 23, and 24 and in amputated lower limb insole sensor of 9, 12, and 16 (p<.05). 2) In dynamic gait condition, there were significantly higher dynamic pressure in sound lower limb insole sensor of 2, 18, 22, 23, and 24 and in amputated lower limb insole sensor of 5, 9, 10, 11, 12, 14, 15, and 16 (p<.05). 3) In dynamic gait condition, there were significantly higher pressure-time integral in sound lower limb insole sensor of 2, 4, 18, 19, 20, 21, 23, and 24 and in amputated lower limb insole sensor of 5, 11, 12, and 15 (p<.05). 4) In dynamic gait condition, there were significantly higher relative impulse in sound lower limb insole sensor of 18, 19, 20, 22, 23, and 24 and in amputated lower limb insole sensor of 5, 9, 10, 11, 12, and 15 (p<.05). 5) In dynamic gait condition, there was significantly higher percentage of contact time in push off phase of sound lower limb and in support phase of amputated lower limb (p<.05). These results suggest that trans-tibial amputee subjects had characteristics of shortened push off phase due to unutilized forefoot and of lengthened support phase with higher pressure in the midfoot.

  • PDF

The Effect Of EMS Combined Lower Limb Strengthening Training on the Quadriceps Femoris Muscle Activity of the Soccer Player (EMS를 결합한 다리 근력 강화훈련이 대학 축구선수의 넙다리네갈래근 근활성도에 미치는 영향)

  • Yo-han Uhm;Han-shin Jung;Yoon-hwan Kim
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.29 no.2
    • /
    • pp.49-57
    • /
    • 2023
  • Background: This study aims to investigate the effect of lower limb strengthening training combined with electro muscle stimulation on the quadriceps femoris muscle activity of soccer players. Methods: Thirty university soccer players were selected as study subjects and divided into a lower limb strengthening training group combined with EMS (Group I) and a general lower limb strengthening training group (Group II), and 15 subjects were randomly assigned. After receiving general soccer training, subjects in this study additionally mediated lower limb strengthening training combined with EMS and general lower limb strengthening training for 26 minutes, 3 times a week for 8 weeks. Quadriceps femoris muscle activity was analyzed before mediation. Vastus medialis, vastus lateralis, and rectus femoris were measured with maximum isometric contraction in the manual muscle test position in order to analyze leg muscle activity. The same items as above were re-measured and a between-group analysis was conducted after 8 weeks of mediation. Results: As a result of comparative analysis of lower extremity muscle activity between groups, the lower limb strengthening training group combined with EMS showed a statistically significant difference in lower extremity muscle activity compared to the general lower limb strengthening training group. Conclusion: As a result, it was found that lower limb strengthening training combined with EMS was more effective in improving quadriceps femoris muscle activity. Based on this study, we are going to provide basic data on the possibility of using EMS in the field of sports rehabilitation for soccer players.

  • PDF

Development of an Ergonomic Checklist for the Investigation of Work-related Lower Limb Disorders in Farming - ALLA: Agricultural Lower-Limb Assessment (농작업에서 발생하는 하지자세의 근골격계 질환 위험도 평가를 위한 인간공학적 평가도구 개발)

  • Kong, Yong-Ku;Han, Jun-Goo;Kim, Dae-Min
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.933-942
    • /
    • 2010
  • Objective: To develop an ergonomic evaluation tool which can be apply to assess the lower-limb postures associated with farming tasks. Background: In general, most of existing ergonomic assessment tools was developed to investigate the work-related musculoskeletal disorders of the upper-limb postures in manufacturing industry. Methods: As the first step of development of the evaluation tool, 13 lower-limb postures that were commonly observed in farming task were investigated by the subjective discomfort ratings, heart rates, and muscle activities. And then, an ergonomic evaluation tool for the lower-limb postures was developed based on results of the first experiment. Lastly, the ergonomic checklist which was developed in the current study was compared with other existing ergonomic assessment tools. Results: Based on the results of comparisons between a newly developed assessment tool and other existing assessment tools, it was found that a newly developed tool can perceive more sensitively for the various lower-limb postures than other assessment tools. Conclusions: Lower-limb posture assessment tool which can evaluate and assess risks of lower-limb WMSDs which were prevalent in farming tasks more easily and accurately was developed in this study. The lower-limb assessment tool can also be utilized to prevent WMSDs related with lower-limbs as well as improve working environments.

The Evaluation of Workload on Lower Limbs Muscles in Imbalanced Lower Limbs Postures Using EMG for Preventing WMSDs (근골격계 질환 예방을 위한 하지의 불균형 작업자세에서 근전도를 이용한 하지 근육의 작업부하 평가)

  • Hong, Chang-Woo;Kim, Yu-Chang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.81-85
    • /
    • 2009
  • Work related musculoskeletal disorders(WMSDs) was a leading cause of sick leave and injuries in the industries of our country. Posture was an important consideration in the design of work method and workplaces, because it affected the ability of workers to use various equipments and influenced how long they could perform their job without feeling discomfort, fatigue, and musculoskeletal disorders. Imbalanced lower limb postures such as a squatting posture were awkward working postures common to the shipbuilding shops, farms, automobiles assembly lines in our country. Different awkward working postures were known to be associated with specific musculoskeletal disorders. Eight postures in lower limb postures divided into balanced and imbalanced postures were evaluated by electromyographic(EMG) activity for lower limb muscles. Twelve male subjects participated in this study. This paper was to analyze the effects of lower limb muscles workload according to lower limb postures(knee angle) and working time. The ANOVA results showed that most EMG root mean square(RMS) values were statistically significant effect according to lower limb postures(knee angle) and working time. Therefore, the results of this study will provide the basis to evaluate workload of lower limb postures correctly adopted by workers in various jobs and the ergonomic reference to prevent WMSDs.

Design of a Novel Gait Rehabilitation Robot with Upper and Lower Limbs Connections (상하지 연동된 새로운 보행재활 로봇의 설계)

  • Yoon, Jung-Won;Novandy, Bondhan;Christi, Christi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.672-678
    • /
    • 2008
  • This paper proposes a new rehabilitation robot with upper and lower limb connections for gait training. As humans change a walking speed, their nervous systems adapt muscle activation patterns to modify arm swing for the appropriate frequency. By analyzing this property, we can find a relation between arm swinging and lower limb motions. Thus, the lower limb motion can be controlled by the arm swing for walking speed adaptation according to a patent's intension. This paper deals with the design aspects of the suggested gait rehabilitation robot, including a trajectory planning and a control strategy. The suggested robot is mainly composed of upper limb and lower limb devices, a body support system. The lower limb device consists of a slider device and two 2-dof footpads to allow walking training at uneven and various terrains. The upper limb device consists of an arm swing handle and switches to use as a user input device for walking. The body support system will partially support a patient's weight to allow the upper limb motions. Finally, we showed simulation results for the designed trajectory and controller using a dynamic simulation tool.

The effect of biomechanical isokinetic excercise of residual muscles in the stump on restoring gait of transfemoral and transtibial amputees (하지절단자의 보행 복원을 위한 단단부 잔존근육의 생체역학적 등속성 운동 효과에 대한 연구)

  • 홍정화;송창호;이재연;문무성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.723-728
    • /
    • 2003
  • The physical restoration technology for lower limb amputees is being advanced as the biomechatronics is being applied to the area of rehabilitation. As the advanced prosthetics for lower limb amputees are introduced, a suitable prescription of biomechanical rehabilitation training becomes important to utilize the advanced full features of the devices. Since lower limb amputation significantly affects biomechanical balance of mosculoskeletal system for gait, an appropriate and optimal biomechanical training and exercise should be provided to rebalance the system before wearing the prostheses. Particularly, biomechanical muscular training for hip movements in the both affected and sound lower limbs is important to achieve a normal-like ambulation. However, there is no study to understand the effect of hip muscle strength on the gait performance of lower limb amputees. To understand the hip muscle strength characteristics for normal and amputated subjects, the isokinetic exercises for various ratios of concentric contraction to eccentric contraction were performed for hip flexion-extension and adduction-abduction. As a results. biomechanical isokinetic training protocols and performance measurement methodologies for lower limb amputees were developed in this study. Using the protocols and measurement methods, it has been understood that the appropriate and optimal biomechanical prescription for the rehabilitation process for lower limb amputees is important for restoring their gait ability

  • PDF

Using a Thermal Imaging Camera to Locate Perforators on the Lower Limb

  • Paul, Sharad P.
    • Archives of Plastic Surgery
    • /
    • v.44 no.3
    • /
    • pp.243-247
    • /
    • 2017
  • Reconstruction of the lower limb presents a complex problem after skin cancer surgery, as proximity of skin and bone present vascular and technical challenges. Studies on vascular anatomy have confirmed that the vascular plane on the lower limb lies deep to the deep fascia. Yet, many flaps are routinely raised superficial to this plane and therefore flap failure rates in the lower limb are high. Fascio-cutaneous flaps based on perforators offer a better cosmetic alternative to skin grafts. In this paper, we detail use of a thermal imaging camera to identify perforator 'compartments' that can help in designing such flaps.

Comparison of Muscle Activities of Trunk and Lower Limb during Bow and Squat Exercises

  • Shon, Ji-won;Lim, Hyung-won
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.2
    • /
    • pp.95-100
    • /
    • 2016
  • Purpose: The purposes of this study were to examine muscle activities of trunk and lower limb during squat and 108 bows exercises and to provide objective data for establishing a training method for improving muscle strength of trunk and lower limb. Methods: Twenty normal healthy subjects participated in this study. Each exercise was divided into five periods. Muscle activities of trunk and lower limb in each period of both 108 bows and squat exercises were measured and analyzed by independent t-test. Results: In starting, mid-flexion, mid-extension, and end period muscle activities obtained from 108 bows exercise were significantly higher than those from squat exercise. However, in the final flexion period, muscle activities of multifidus, elector spinae, rectus femoris, biceps femoris, and tibialis anterior from squat exercise were significantly higher than those from bow exercise. Conclusion: In this study, high muscle activities in most muscles of trunk and lower limb were observed from all periods of 108 bows exercise except the final flexion period. Therefore, it is likely that 108 bows exercise rather than squat exercise is more suitable for high strength exercise to improve muscle strength of trunk and lower limb and thus will be applicable for strengthening muscles of trunk and lower limb of patients.

Study about the Causes of Muscle Force Mistake Occurrence from the Upper Limb Lifting Resistance Test in Manual Muscle Test (Manual Muscle Test 중 상지거상저항 검사 시 근력 오류 발생 원인에 대한 고찰)

  • Ahn, Seong-Hun;Yang, Seung-Bum;Lee, Young-Jun;Hwang, Seong-Yeon;Kim, Jae-Hyo;Sohn, In-Chul
    • Journal of TMJ Balancing Medicine
    • /
    • v.1 no.1
    • /
    • pp.13-18
    • /
    • 2011
  • Objectives: We investigated muscle force from the upper limb lifting resistance test to conform the objectivity in manual muscle test. Methods: We made standard method in upper limb lifting resistance test to compare with experiment method switching the lower limb position left & right. And resistance forces of upper limb of subject were checked to inspector with closing eyes. Results: 1. The lifting resistance of right upper limb was stronger when the lower limb of right and left were abducted. 2. The lifting resistance of right upper limb was weaken when the lower limb of right and left were adducted. 3. The lifting resistance of right upper limb was weaken when the lower limb of right and left were elevated. Conclusions: As the above results, the deltoid muscle force checked in the upper limb lifting resistance test is affected by the location of lower limbs, it suggested that the muscle force of some part in the body will be affected by the other parts. It will be useful to understand the symmetry principle of body in muscle function.

  • PDF

Control and VR Navigation of a Gait Rehabilitation Robot with Upper and Lower Limbs Connections (상하지가 연동된 보행재활 로봇의 제어 및 VR 네비게이션)

  • Novandy, Bondhan;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.315-322
    • /
    • 2009
  • This paper explains a control and navigation algorithm of a 6-DOF gait rehabilitation robot, which can allow a patient to navigate in virtual reality (VR) by upper and lower limbs interactions. In gait rehabilitation robots, one of the important concerns is not only to follow the robot motions passively, but also to allow the patient to walk by his/her intention. Thus, this robot allows automatic walking velocity update by estimating interaction torques between the human and the upper limb device, and synchronizing the upper limb device to the lower limb device. In addition, the upper limb device acts as a user-friendly input device for navigating in virtual reality. By pushing the switches located at the right and left handles of the upper limb device, a patient is able to do turning motions during navigation in virtual reality. Through experimental results of a healthy subject, we showed that rehabilitation training can be more effectively combined to virtual environments with upper and lower limb connections. The suggested navigation scheme for gait rehabilitation robot will allow various and effective rehabilitation training modes.