• Title/Summary/Keyword: lower and upper rough approximations

Search Result 8, Processing Time 0.024 seconds

ROUGH SET THEORY APPLIED TO INTUITIONISTIC FUZZY IDEALS IN RINGS

  • Jun, Young-Bae;Park, Chul-Hwan;Song, Seok-Zun
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.551-562
    • /
    • 2007
  • This paper concerns a relationship between rough sets, intuitionistic fuzzy sets and ring theory. We consider a ring as a universal set and we assume that the knowledge about objects is restricted by an intuitionistic fuzzy ideal. We apply the notion of intutionistic fuzzy ideal of a ring for definitions of the lower and upper approximations in a ring. Some properties of the lower and upper approximations are investigated.

Intuitionistic Fuzzy Rough Approximation Operators

  • Yun, Sang Min;Lee, Seok Jong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.208-215
    • /
    • 2015
  • Since upper and lower approximations could be induced from the rough set structures, rough sets are considered as approximations. The concept of fuzzy rough sets was proposed by replacing crisp binary relations with fuzzy relations by Dubois and Prade. In this paper, we introduce and investigate some properties of intuitionistic fuzzy rough approximation operators and intuitionistic fuzzy relations by means of topology.

AN EXTENSION OF SOFT ROUGH FUZZY SETS

  • Beg, Ismat;Rashid, Tabasam
    • Korean Journal of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.71-85
    • /
    • 2017
  • This paper introduces a novel extension of soft rough fuzzy set so-called modified soft rough fuzzy set model in which new lower and upper approximation operators are presented together their related properties that are also investigated. Eventually it is shown that these new models of approximations are finer than previous ones developed by using soft rough fuzzy sets.

Pointless Form of Rough Sets

  • FEIZABADI, ABOLGHASEM KARIMI;ESTAJI, ALI AKBAR;ABEDI, MOSTAFA
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.549-562
    • /
    • 2015
  • In this paper we introduce the pointfree version of rough sets. For this we consider a lattice L instead of the power set P(X) of a set X. We study the properties of lower and upper pointfree approximation, precise elements, and their relation with prime elements. Also, we study lower and upper pointfree approximation as a Galois connection, and discuss the relations between partitions and Galois connections.