• Title/Summary/Keyword: low-yield steel

Search Result 173, Processing Time 0.026 seconds

Seismic Performance Evaluation of Welded Beam-Column Connections abricated with SHN Steel Sections (SHN 형강 보-기둥 접합부의 내진성능 평가)

  • Kim, Tae Jin;Park, JongWon;Cho, Jeong Hyuk;Kim, Hee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.829-838
    • /
    • 2008
  • In this study, cyclic tests of beam-column connections composed with members applicable to the domestic low-middle rise steel buildings were conducted to develop seismic connection details and its evaluation. Connection types and material properties of the steel were testing variables and the difference between the newly developed seismic rolled section (SHN490) and existing rolled section (SM490) was also investigated. Distributions of the yield strength and the ultimate strength of the SHN490 rolled section were relatively uniform comparing to those of the SM490 rolled section Brittle fracture in the weldments of the test specimens was not observed. Instead, fracture occurred at heat-affected zones or the stress-concentrated point near the weld access hole of the beam flanges. In the case of identical rolled-section specimens, the rotational capacity and dissipated energy of the WUF-W connection was larger than those of the WUF-B connection. In the case of identical connection types, the rotational capacity and dissipated energy of the SHN490 section connection was larger than those of the WUF-B section connection.

Earthquake Resistance of Modular Building Units Using Load-Bearing Steel Stud Panels (내력벽식 스터드패널을 적용한 모듈러건물유닛의 내진성능)

  • Ha, Tae Hyu;Cho, Bong-Ho;Kim, Tae Hyeong;Lee, Doo Yong;Eom, Tae Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.519-530
    • /
    • 2013
  • Cyclic tests on modular building units for low-rise buildings composed of stud panels and a light-weight steel perimeter frame, were performed to evaluate the earthquake resistance such as stiffness, load-carrying capacity, ductility, and energy dissipation per load cycle. The strap-braced and sheeted stud panels were used as the primary lateral load-resistant element of the modular building units. Test results showed that the modular building units using the strap-braced and sheeted stud panels exhibited excellent post-yield ductile behaviors. The maximum drift ratios were greater than 5.37% and the displacement ductility ratios were greater than 5.76. However, the energy dissipation per load cycle was poor due to severe pinching during cyclic loading. Nominal strength, stiffness, and yield displacement of the modular building units were predicted based on plastic mechanisms. The predictions reasonably and conservatively correlated with the test results. However, the elastic stiffness of the strap-braced stud panel was significantly overestimated. For conservative design, the elastic stiffness of the strap-braced stud panel needs be decreased to 50% of the nominal value.

Effects of B and Cu Additions on the Microstructure and Mechanical Properties of High-Strength Bainitic Steels (베이나이트계 고강도강의 미세조직과 기계적 특성에 미치는 B 및 Cu 첨가의 영향)

  • Yim, H.S.;Lee, S.Y.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.2
    • /
    • pp.75-81
    • /
    • 2015
  • Effects of B and Cu additions on the microstructure and mechanical properties of high-strength bainitic steels were investigated in this study. Six kinds of high-strength bainitic steels with different B and Cu contents were fabricated by thermo-mechanical control process composed of controlled rolling and accelerated cooling. The microstructures of the steels were analyzed using optical and transmission microscopy, and the tensile and impact tests were conducted on them in order to investigate the correlation of microstructure with mechanical properties. Depending on the addition of B and Cu, various low-temperature transformation products such as GB (granular bainite), DUB (degenerated upper bainite), LB (lower bainite), and LM (lath martensite) were formed in the steels. The addition of B and Cu increased the yield and tensile strengths because of improved hardenability and solid solution strengthening, but decreased the ductility and low-temperature toughness. The steels containing both B and Cu had a very high strength above 1.0 GPa, but showed a worse low-temperature toughness of higher DBTT (ductile-to-brittle transition temperature) and lower absorbed energy. On the other hand, the steels having GB and DUB showed a good combination of tensile and impact properties in terms of strength, ductility, yield ratio, absorbed energy, and DBTT.

Evaluation of The Moment Resistance Joint Strength of Larch Glulam Using Glass Fiber Reinforced Wood Plate

  • Song, Yo-Jin;Jung, Hong-Ju;Park, Hyun-Ho;Lee, Hak-Young;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.571-578
    • /
    • 2014
  • As a way of developing wooden joint development, a glass fiber reinforced wood plate was manufactured to replace a steel plate. Also, the fracture toughness was evaluated. Through application to a cantilever-type specimen made of a column and a beam, the moment resistance performance was evaluated. For the fracture toughness specimen of the wood plate, 12 types were manufactured by varying the combination of a main member (veneer and plywood) and reinforcement (glass fiber sheet and glass fiber cloth). The results of the fracture toughness test indicated that the 5% yield load of the specimen using plywood was 18% higher than that of the specimen using veneer, and that the specimen reinforced by inserting glass fiber sheets between testing materials (Type-3-PS) had the highest average 5% yield load 4841 N. Thus, a moment resistance strength test was performed by applying Type-3-PS to a column-beam joint. The results of the test indicated that compared to the specimen using a steel plate and a drift pin (Type-A), the maximum moment ratio of the specimen using a glass fiber reinforced wood plate (Type-3-PS) and a drift pin (Type-B) was 0.79; and that a rupture occurred in the wood plate due to high stiffness of the drift pin. The maximum moment ratio of the specimen using a glass fiber reinforced wood plate (Type-3-PS) and a glass fiber reinforced wooden laminated pin (Type-C) was 0.67, which showed low performance. However, unlike Type-A, a ductile fracture occurred on Type-C, and the load gradually decreased even after the maximum moment.

Bond Strength of Super-CFRP Rod in Concrete

  • Seo, Sung-Tag
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.29-34
    • /
    • 2006
  • Elastic modulus, tensile and bond capacities are important factors for developing an effective reinforcing action of a flexural member as a reinforcing material for concrete structures. Reinforcement must have enough bond capacity to prevent the relative slip between concrete and reinforcement. This paper presents an experimental study to clarify the bond capacity of prestressed carbon fiber reinforced polymer(CFRP) rod manufactured by an automatic assembly robot. The bond characteristics of CFRP rods with different pitch of helical wrapping were analyzed experimentally. As the result, all types of CFRP rods show a high initial stiffness and good ductility. The mechanical properties of helical wrapping of the CFRP rods have an important effect on the bond of these rods to concrete after the bond stress reached the yield point. The stress-slip relationship analyzed from the pull-out test of embedded cables within concrete was linear up to maximum bond capacity. The deformation within the range of maximum force seems very low and was reached after approximately 1 mm. The average bond capacity of CF20, CF30 and CF40 was about 12.06 MPa, 12.68 MPa and 12.30 MPa, respectively. It was found that helical wrapping was sufficient to yield bond strengths comparable to that of steel bars.

Correlation Between M-A Constituents and Tensile Properties in the Intercritical Coarse Grained HAZ of an Ultra Low Carbon Steel (극 저탄소강의 Intercritical coarse grained HAZ에서의 M-A상과 인장특성 간의 상관관계)

  • Lee, Yoon-Ki;Moon, Joon-Oh;Kim, Sang-Hoon;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.99-103
    • /
    • 2010
  • It is well known that martensite-austenite (M-A) constituents are formed in the intercritically reheated coarse grained heat affected zone (ICCGHAZ) of a multipass weld and they act on the local brittle zone (LBZ) in the welded structures. To investigate the effect of M-A constituents on the tensile properties of ICCGHAZ, specimens with M-A constituents of different volume fraction and size were prepared through the multipass welding cycles simulated by a Gleeble simulator and then tensile test was carried out. The results indicated that finely distributed M-A constituents contributed to decrease the yield ratio, which is mainly due to the increased tensile strength.

Inclusion and mechanical properties of ODS-RAFM steels with Y, Ti, and Zr fabricated by melting

  • Qiu, Guo-xing;Wei, Xu-li;Bai, Chong;Miao, De-jun;Cao, Lei;Li, Xiao-ming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2376-2385
    • /
    • 2022
  • Two groups of oxide dispersion-strengthened reduced-activation ferritic/martensitic steels (A and B) were prepared by adding Y, Ti, and Zr into steels through vacuum induction melting to investigate the inclusions, microstructures, mechanical properties of the alloys. Results showed that particles with Y, Ti, and Zr easily formed. Massive, Zr-rich inclusions were found in B steel. Density of micron inclusions in A steel was 1.42 × 1014 m-3, and density of nanoparticles was 3.61 × 1016 m-3. More and finer MX carbides were found in steel tempered at 650 ℃, and yield strengths (YS) of A and B steel were 714±2 and 664±3.5 MPa. Thermomechanical processing (TMP) retained many dislocations, which improved the mechanical properties. YSs of A and B treated by TMP were 725±3 and 683±4 MPa. The existence of massive Zr-rich inclusions in B steels interrupted the continuity of the matrix and produced microcracks (fracture), which caused a reduction in mechanical properties. The presence of fine prior austenite grain size and inclusions was attributed to the low DBTTs of the A steels; DBTTs of A650 and A700 alloy were -79 and -65 ℃. Tempering temperature reduction and TMP are simple, readily useable methods that can lead to a superior balance of strength and impact toughness in industry applications.

Experimental and analytical evaluation of a low-cost seismic retrofitting method for masonry-infilled non-ductile RC frames

  • Srechai, Jarun;Leelataviwat, Sutat;Wongkaew, Arnon;Lukkunaprasit, Panitan
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.699-712
    • /
    • 2017
  • This study evaluates the effectiveness of a newly developed retrofitting scheme for masonry-infilled non-ductile RC frames experimentally and by numerical simulation. The technique focuses on modifying the load path and yield mechanism of the infilled frame to enhance the ductility. A vertical gap between the column and the infill panel was strategically introduced so that no shear force is directly transferred to the column. Steel brackets and small vertical steel members were then provided to transfer the interactive forces between the RC frame and the masonry panel. Wire meshes and high-strength mortar were provided in areas with high stress concentration and in the panel to further reduce damage. Cyclic load tests on a large-scale specimen of a single-bay, single-story, masonry-infilled RC frame were carried out. Based on those tests, the retrofitting scheme provided significant improvement, especially in terms of ductility enhancement. All retrofitted specimens clearly exhibited much better performances than those stipulated in building standards for masonry-infilled structures. A macro-scale computer model based on a diagonal-strut concept was also developed for predicting the global behavior of the retrofitted masonry-infilled frames. This proposed model was effectively used to evaluate the global responses of the test specimens with acceptable accuracy, especially in terms of strength, stiffness and damage condition.

EFFECTS OF TEMPERING AND PWHT ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF SA508 GR.4N STEEL

  • Lee, Ki-Hyoung;Jhung, Myung Jo;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.413-422
    • /
    • 2014
  • Presented in this study are the variations of microstructures and mechanical properties with tempering and Post-Weld Heat Treatment (PWHT) conditions for SA508 Gr.4N steel used as Reactor Pressure Vessel (RPV) material. The blocks of model alloy were austenitized at the conventional temperature of $880^{\circ}C$ then tempered and post-weld heat treated at four different conditions. The hardness and yield strength decrease with increased tempering and PWHT temperatures, but impact toughness is significantly improved, especially in the specimens tempered at $630^{\circ}C$. The sample tempered at $630^{\circ}C$ with PWHT at $610^{\circ}C$ shows optimum mechanical properties in hardness, strength, and toughness, excluding only the transition property in the low temperature region. The microstructural observation and quantitative analysis of carbide size distribution show that the variations of mechanical properties are caused by the under-tempering and carbide coarsening which occurred during the heat treatment process. The introduction of PWHT results in the deterioration of the ductile-brittle transition property by an increase of coarse carbides controlling cleavage initiation, especially in the tempered state at $630^{\circ}C$.

Description of Hysteresis Loops using Modified Overlay Model (수정 다층 모델을 이용한 이력곡선의 묘사)

  • Yoon, Sam-Son;Hong, Seong-Gu;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1856-1863
    • /
    • 2003
  • Overlay model had several advantages to describe hysteretic behavior of material and showed good capability for many engineering materials. However, this model is only applicable to material obeying Masing postulate. Some materials such as 316L stainless steel do not follow Masing postulate and show cyclic hardening(or softening) and strain range dependence. Low cycle fatigue tests of 316L stainless steel at 600$^{\circ}C$ were performed to investigate the characteristics of cyclic behavior of non-Masing material. From all tests cyclic softening was observed. There were differences in elastic limit of hysteresis loop according to applied strain range. To consider these features, modified overlay model was developed. Yield stresses of subelements were divided into isotropic and anisotropic part to describe the non-Masing behavior. The plastic strain range memorization was introduced to consider the strain range dependence. The prediction using modified overlay model showed a good accordance to actual hysteresis loops.