• Title/Summary/Keyword: low-viscosity type high range water reducer

Search Result 5, Processing Time 0.023 seconds

Analysis of the influence of low viscosity typed high range water reducer on rheological properties high performance cement paste depending on SCM types and contents (저점도형 고성능 감수제가 다양한 혼화재 종류 및 치환량 조건에서 고성능 시멘트 페이스트의 레올로지 성능에 미치는 영향 분석)

  • Jeon, Jong-Woon;Son, Bae-Geun;Lee, Hyang-Sun;Han, Dong-Yeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.46-47
    • /
    • 2018
  • High performance concrete with low water-to-cement ratio has been widely used with increased demand of high rising buildings and huge scaled structures. Additionally, for high performance concrete, various SCMs are replaced to improve its performance from fresh state to hardened state. With the drawback of increased viscosity of the concrete mixture for high performance concrete, low-viscosity typed high range water reducer is the relatively new admixture. Therefore, as a goal of the research, under using various SCMs with wide range of content, the performance of low-viscosity typed high range water reducer was evaluated. Especially, in this research, the influence of low-viscosity typed high range water reducer on rheological properties including plastic viscosity and yield stress were assessed. As a result of the research, it is expected to provide a fundamental information of low -viscosity typed high ranged water reducer on high performance concrete with various conditions of SCMs.

  • PDF

Performance Analysis of Cement Paste Including Generic and Low-viscosity Type High Range Water Reducer (저점도형 감수제 및 고성능 감수제의 사용에 따른 시멘트 페이스트 성능 분석)

  • Son, Bae-Geun;Han, Dong-Yeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.32-33
    • /
    • 2017
  • In order to improve the flow performance of high performance concrete, use of high performance water reducing agent and low viscosity type water reducing agent is a study of suitable range of use due to side effects. in this study, we aimed at reducing viscosity and yield value using high performance water reducing agent and low viscosity type water reducing agent, and this was evaluated using a rheometer. as a result of analysis of viscosity and yield value, it was found that the high performance water reducing agent has higher reduction effect than the low viscosity type water reducing agent. however, the larger the viscosity lowering effect is, the lower the usable range is, compared to general high performance water reducing agents, and it was found that sufficient consideration for this judgment of appropriate quantity is necessary.

  • PDF

Performance Analysis of Low-viscosity type Superplasticizer (저점도형 감수제의 성능 분석)

  • Han, Dongyeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.35-36
    • /
    • 2016
  • Recently, with the increasing demand of high performance of concrete, the mix design of concrete mixture has became low water-to-binder ratio with high binder content. To compensate these trend of mix design, high range water reducer, or superplascizier has been invented to achieve high flowable concrete. Although this superplasticizer provides favorable workability based on its dispersing action on the components of concrete mixture, it has an limitation of decreasing viscosity of the mixture, and thus it is difficult to secure sufficient workability for high performance concrete mixtures with high binder content. To improve the workability of concrete with high viscosity, recently, low-viscosity type superplasticizer was introduced, and in this research, a fundamental properties of low-viscosity type superplasticizer is evaluated.

  • PDF

A Study on Viscosity Reducing of Cement-Based Materials by Replacing Byproducts and Adding Low-Viscosity Type HRWR (산업부산물 치환 및 저점도형 고성능 감수제를 사용한 시멘트 계열 재료의 점도저하 방안 연구)

  • Son, Bae-Geun;Han, Dongyeop
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.353-358
    • /
    • 2017
  • The aim of this research is providing a fundamental idea on reducing viscosity of high performance cementitous materials. In rheological aspect, to determine the fluidity of the cementitious materials, both yield stress and viscosity should be controlled. For the high performance cementitious materials with low water-to-binder ratio and high volume fraction, it was difficult to reduce the viscosity with superplasticizer while reducing yield stress was relatively easy. Hence, in this research, with the goal of reducing viscosity of the cementitious materials, both ways of reducing viscosity were suggested: achieving proper combination of powder conditions, and adding low-viscosity typed water reducer. First, by replacing various byproduct powders, specifically, raw coal ash and wasted limestone powder showed favorable results on reducing viscosity of the cement paste. Regarding the low viscosity typed superplasticizer, it showed a good performance on reducing viscosity comparing with generic superplasticizer. Therefore, based on the results of this research, it is expected to provide a fundamental idea on reducing viscosity of cementitious materials by various methods.

Feasibility Analysis of Wasted Limestone Powder as a Viscosity Reducing Material for Cement Based Materials (시멘트 계열 재료의 점도 저하용 혼화재료로서 폐석회석 미분말의 사용 가능성 분석)

  • Lee, Hyang-Seon;Jeon, Jong-Un;Son, Bae-Geun;Han, Dongyeop
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.123-129
    • /
    • 2018
  • The aim of the research is providing a fundamental idea of reducing viscosity of cement based materials by replacing powder based material. With developing concrete technology, high performance concrete with high solid volume fraction has been used widely. Under the conditions of the high solid volume fraction due to the low w/c and replacement of SCMs, decreased fluidity is one of the critical problem, and thus plasticizer has been used to improve fluidity of the mixture. However, in rheological aspect, the fluidity of cement based materials can be defined with yield stress and viscosity, and using plasticizer only decreases yield stress without least controlling on viscosity. Therefore, based on the idea of Krieger-Dougherty model, a feasibility of wasted limestone powder from cement manufacturing process was used to decrease the viscosity of the mixture by replacing cement powder. According to a series of experiment, by replacing wasted limestone powder solely, there was a possibility of reducing viscosity was observed. Thus, in this research scope, it is considered to contribute on providing a fundamental idea of reducing viscosity with powder replacement and it is expected to contribute on further research using various conditions of replacing powders for reducing viscosity of cementitious materials.