• Title/Summary/Keyword: low-temperature-active

Search Result 538, Processing Time 0.038 seconds

Thin Films for Environmental Application and Energy Devices

  • Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.91-91
    • /
    • 2012
  • We aim in synthesizing various functional thin films thinner than ~ 10 nm for environmental applications and photovoltaic devices. Atomic layer deposition is used for synthesizing inorganic thin films with a precise control of the film thickness. Several examples about application of our thin films for removing volatile organic compounds (VOC) will be highlighted, which are summarized in the below. 1) $TiO_2$ thin films prepared by ALD at low temperature ($<100^{\circ}C$) show high adsorption capacity for toluene. In combination with nanostructured templates, $TiO_2$ thin films can be used as building-block of high-performing VOC filter. 2) $TiO_2$ thin films on carbon fibers and nanodiamonds annealed at high temperatures are active for photocatalytic oxidation of VOCs, i.e. photocatalytic filter can be created by atomic layer deposition. 3) NiO can catalyze oxidation of toluene to $CO_2$ and $H_2O$ at $<300^{\circ}C$. $TiO_2$ thin films on NiO can reduce poisoning of NiO surfaces by reaction intermediates below $200^{\circ}C$. We also fabricated inverted organic solar cell based on ZnO electron collecting layers on ITO. $TiO_2$ thin films with a mean diameter less than 3 nm on ZnO can enhance photovoltaic performance by reducing electron-hole recombination on ZnO surfaces.

  • PDF

Preparation of $SnO_2$ Thin Film Using Reactive DC Magnetron Sputtering (반응성 DC 마그네트론 스퍼터법에 의한 $SnO_2$ 박막재조 및 특성)

  • Jung, H.W.;Lee, C.;Shin, J.H.;Song, K.H.;Shin, S.H.;Park, J.I.;Park, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1352-1354
    • /
    • 1997
  • Transparent conductive thin films have found many application in many active and passive electronic and opto-electronic devices as like flat Panel display electrode and window heat mirror, etc. Low resistivity and high transmittance of this films can be obtained by controlling deposition parameters, which are oxygen partial Pressure, substrate temperature and dopant concentration. In this study, We prepared non-stoichiometric and Sb-doped thin films of tin dioxide by reactive DC magnetron sputtering technology. The lowest resistivity of about $3.0{\times}10^{-3}\;{\Omega}cm$ and 80% transmittance in the visible light region have heed obtained at optimal deposition condition.

  • PDF

Spectral and Mechanistic Investigation of Oxidative Decarboxylation of Phenylsulfinylacetic Acid by Cr(VI)

  • Subramaniam, Perumal;Selvi, Natesan Thamil;Devi, Soundarapandian Sugirtha
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • The oxidative decarboxylation of phenylsulfinylacetic acid (PSAA) by Cr(VI) in 20% acetonitrile -80% water (v/v) medium follows overall second order kinetics, first order each with respect to [PSAA] and [Cr(VI)] at constant [$H^+$] and ionic strength. The reaction is acid catalysed, the order with respect to [$H^+$] is unity and the active oxidizing species is found to be $HCrO_3^+$. The reaction mechanism involves the rate determining nucleophilic attack of sulfur atom of PSAA on chromium of $HCrO_3^+$ forming a sulfonium ion intermediate. The intermediate then undergoes ${\alpha}$,${\beta}$-cleavage leading to the liberation of $CO_2$. The product of the reaction is found to be methyl phenyl sulfone. The operation of substituent effect shows that PSAA containing electron-releasing groups in the meta- and para-positions accelerate the reaction rate while electron withdrawing groups retard the rate. An excellent correlation is found to exist between log $k_2$ and Hammett ${\sigma}$ constants with a negative value of reaction constant. The ${\rho}$ value decreases with increase in temperature evidencing the high reactivity and low selectivity in the case of substituted PSAAs.

Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters

  • Lee, Seung-Ho;Cha, Jinmyung;Sim, Kyunjong;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.605-609
    • /
    • 2014
  • Magnetic multi-granule nanoclusters (MGNCs) were investigated as an inexpensive means to effectively remove arsenic from aqueous environment, particularly groundwater sources consumed by humans. Various size MGNCs were examined to determine both their capacity and efficiency for arsenic adsorption for different initial arsenic concentrations. The MGNCs showed highly efficient arsenic adsorption characteristics, thereby meeting the allowable safety limit of $10{\mu}g/L$ (ppb), prescribed by the World Health Organization (WHO), and confirming that 0.4 g and 0.6 g of MGNCs were sufficient to remove 0.5 mg/L and 1.0 mg/L of arsenate ($AsO_4{^{3-}}$) from water, respectively. Adsorption isotherm models for the MGNCs were used to estimate the adsorption parameters. They showed similar parameters for both the Langmuir and Sips models, confirming that the adsorption process in this work was active at a region of low arsenic concentration. The actual efficiency of arsenate removal was then tested against 1 L of artificial arsenic-contaminated groundwater with an arsenic concentration of 0.6 mg/L in the presence of competing ions. In this case, only 1.0 g of 100 nm MGNCs was sufficient to reduce the arsenic concentrations to below the WHO permissible safety limit for drinking water, without adjusting the pH or temperature, which is highly advantageous for practical field applications.

In Co-Doping Effect on the Optical Properties of P-Type GaN Epilayers (In 코도핑 된 p-GaN의 광학적 특성)

  • An, Myung-Hwan;Chung, Ho-Yong;Chung, Sang-Jo
    • Korean Journal of Materials Research
    • /
    • v.18 no.8
    • /
    • pp.450-453
    • /
    • 2008
  • Mg-doped and In-Mg co-doped p-type GaN epilayers were grown in a low-pressure metal organic chemical vapor deposition technique. The effect of In doping on the p-GaN layer was studied through photoluminescence (PL), persistent photoconductivity (PPC), and transmission electron microscopy (TEM) at room temperature. For the In-doped p-GaN layer, the PL intensity increases significantly and the peak position shifts to 3.2 eV from 2.95 eV of conventional p-GaN. Additionally, In doping greatly reduces the PPC, which was very strong in conventional p-GaN. A reduction in the dislocation density is also evidenced upon In doping in p-GaN according to TEM images. The improved optical properties of the In-doped p-GaN layer are attributed to the high crystalline quality and to the active participation of incorporated Mg atoms.

Numerical Study on Operating Parameters and Shapes of a Steam Reformer for Hydrogen Production from Methane (천연가스로부터 수소를 생산하기 위한 수증기 개질기의 작동조건과 형상에 대한 수치해석 연구)

  • Park, Joong-Uen;Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.60-68
    • /
    • 2009
  • The steam reformer for hydrogen production from methane is studied by a numerical method. Langmuir- Hinshelwood model is incorporated for catalytic surface reactions, and the pseudo-homogeneous model is used to take into account local equilibrium phenomena between a catalyst and bulk gas. Dominant chemical reactions are Steam Reforming (SR) reaction, Water-Gas Shift (WGS) reaction, and Direct Steam Reforming (DSR) reaction. The numerical results are validated with experimental results at the same operating conditions. Using the validated code, parametric study has been numerically performed in view of the steam reformer performance. As increasing a wall temperature, the fuel conversion increases due to the high heat transfer rate. When Steam to Carbon Ratio (SCR) increases, the concentration of carbon monoxide decreases since WGS reaction becomes more active. When increasing Gas Hourly Space Velocity (GHSV), the fuel conversion decreases due to the heat transfer limitation and the low residence time. The reactor shape effects are also investigated. The length and radius of cylindrical reactors are changed at the same catalyst volume. The longer steam reformer is, the better steam reformer performs. However, system energy efficiency decreases due to the large pressure drop.

Design of a Multiple Transmit Coil Driver for Implantable Telemetry Devices (원격 생체 측정 장치를 위한 다중 발신 코일 구동 드라이버 설계)

  • Ryu, Young Kee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.609-614
    • /
    • 2015
  • Implanted telemetry systems provide the ability to monitor different species of animals while they move within their cages. Species monitored include mice, rats, rabbits, dogs, pigs, primates, sheep, horses, cattle, and others. A miniature transmitter implanted in each animal measures one or more parameters. Parameters measured include arterial pressure, intra-pleural pressure, left ventricular pressure, intra-ocular pressure, bladder pressure, ECG, EMG, EEG, EOG, temperature, activity, and other parameters and transmits the data via radio frequency signals to a nearby receiver. Every conventional dedicated transmitter contains one or more sensors, cpu and battery. Due to the expected life of the battery, the measuring time is limited. To overcome these problems, electromagnetic inductive coupling based wireless power transmission technology using multiple transmit coils were proposed, with each coil having a different active area driven by the coil driver. In this research, a parallel resonance based coil driver and serial resonance based coil driver are proposed. From the experiments we see that the parallel coil driver shows better performance under a low impedance and multiple coils configuration. However, the serial coil driver is more efficient for high impedance transmit coils.

The Effect of Chitosan on Hydroxyapatite Precipitation

  • Hatim, Zineb;Bakasse, Mina;Kheribech, Abdelmoula;Abida, Fatima;Bourouisse, Abderrahim
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.484-485
    • /
    • 2006
  • The process of coprecipitation of biocomposite hydroxyapatite/chitosan from aqueous solution at low temperature in alkali environnement was examined. We have shown that initially we have the formation of amorphous octocalcium phosphates $(Ca_8(HPO_4)(PO_4)_5,\;nH_2O:\;OCP)$ and the transferring from OCP to amorphous calcium phosphate $(Ca_9(PO_4)_3,\;nH_2O:\;TCP)$, and then from TCP to calcium-deficient hydroxyapatite $(Ca_{10-X}\;(HPO_4)_X(PO_4)_{6-x}(OH)_{2-X}\;:\;ACP)$ and hydroxyapatite $(Ca_{10}(PO_4)_6(OH)_2\;:\;HAP)$. The transformation of ACP to HAP was inhibited in the presence of chitosan. The result suggests that there is an affinity binding between ACP and chitosan and subsequently blocking the active growth site of ACP.

  • PDF

The Analysis for Thermal Comfort Evaluation during long time operating Air Conditioner (에어컨 장시간 운전시 온열쾌적감 평가에 관한 연구)

  • Kim, Dong-Gyu;Park, Jong-Il;Kim, Se-Hwan
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.59-64
    • /
    • 2007
  • Using air conditioner has been increased in home or office buildings in summer. Also various problems related to air conditioning such as disease induction happened by using air conditioner excessively and operating long. Active operation control is needed for occupant's health when air conditioner operates long. We should think ahead to acquire thermal comfort of occupants which represents psychological and physiological reaction for this operation. Research has been progressed to observe activity of autonomic nervous system by trying to quantitate change of thermal comfort. In this study, questions of the subject and change of body's autonomic nervous system were chosen to evaluate thermal comfort during operation of air conditioner for a long time. Electrocardiogram and questions of the subject which is the progress of changing TSV and CSV by occupants indoor were measured when room air conditioner is operated for a long time, and an air-conditioned adaptability of human body was evaluated by acquiring the change rate of autonomic nervous system through analyzing HRV. As a result of the evaluation, change rate of body's autonomic nervous system corresponded to votes of the subject's question generally, but was distinguished from analysis result of warm-cold sensation in a low temperature area.

Preparation and Characterization of $Pd/CeO_2/Ta/Si$ model catalysts

  • 김도희;우성일
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.145-145
    • /
    • 2000
  • M-CeO2 (M : noble metal) catalysts have been widely studied as three-way catalysts and methanol synthesis catalysts. Ceria is thought to play a number of roles in these catalysts. The Ce(IV)/Ce(III) redox pair may store/release gases under oxidizing/reducing conditions, extending the operational window. Additionally, metal-ceria interactions lead to several effects, including the dispersion of the active components and promoting the activation of molecules such as CO or NO. Pd is a promising component to current TWC formulations and behaves particularly well when compared with Pt and Rh-based catalysts for low-temperature oxidation of Co and hydrocarbon. However the effect of Pd-ceria interactions on the physicochemical properties of Pd and the redox properties of Ce is not elucidated yet. In order to know exactly about the metal-ceria interactions, the model study are expecting to give a better environment, resulting in the wide use of the surface science tools. The substrate was Si(100) wafer, on which Ta metal was sputtered as a thickness of 100nm. The CeO2 thin film of 30nm was deposited by using the magnetron sputtering. Spin coating and magnetron sputtering methods were used to make the Pd thin film layer. The prepared sample was investigated by in-situ XPS, AES, SEM and AFM analysis.

  • PDF