• Title/Summary/Keyword: low-temperature plasma nitriding

Search Result 27, Processing Time 0.023 seconds

Effect of Ar addition on the surface properties of AISI304L stainless steel during low temperature plasma nitriding after low temperature plasma carburizing (AISI304L stainless steel에 저온 플라즈마 침탄처리 후 질화처리 시 Ar의 영향)

  • Jeong, Gwang-Ho;Lee, In-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.120-121
    • /
    • 2007
  • 스테인리스강을 침탄 또는 질화처리 하면 내식성이 크게 떨어진다. 하지만 처리 온도를 충분히 낮게 하면 내식성의 저하 없이 표면 경도를 증가시킬 수 있다. 침탄처리 후 질화 처리를 연속적으로 수행하면, 두꺼운 경화층을 가지고, 침탄처리한 표면보다 높은 경도를 가질 수 있다. 이 논문에서는 침탄처리 후 질화 처리시, Ar을 주입하여 질화층 형성에 주는 영향을 조사 하였다. Ar의 양이 20%보다 낮은 경우 석출물이 거의 형성되지 않았으며, Ar의 양이 증가할수록 표면경도도 증가하였다.

  • PDF

Effect of the Amount of CH4 Content on the Characteristics of Surface Layers of Low Temperature Plasma Nitrocarburizied STS 204Cu Stainless Steel (STS 204Cu 스테인리스강의 저온 플라즈마 침질탄화 처리 시 CH4 가스 함량에 따른 경화층 (S-Phase) 거동)

  • Lee, Insup;Kim, Hojun
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.1
    • /
    • pp.54-61
    • /
    • 2018
  • Plasma Nitriding treatment was performed on STS 204Cu stainless steel samples at a temperature of $400^{\circ}C$ for 15 hours with varying $N_2$ content as 10%, 15% and 25%. Regardless of the content of $N_2$, S-Phase which is a hardened layer of Nitrogen (N) supersaturated phase, was formed in the surface of plasma treated samples. When $N_2$ content was 25%, the thickness of the hardened layer reached up to about $7{\mu}m$ and the surface hardness reached a value of $560Hv_{0.05}$, which is about 2.5 times higher than that of untreated sample (as received $220Hv_{0.05}$). From potentiodynamic polarization test, it was observed that compared to as received sample, the corrosion potential and the corrosion current density of the plasma treated samples were decreased regardless of the $N_2$ content, but the corrosion resistance was not increased much due to the precipitation of $Cr_2N$. On the other hand, pitting potential of the samples treated with 10% and 15% $N_2$ was higher than that of as received sample, however, the samples treated with 25% exhibited a lower pitting potential. Therefore, 10% $N_2$ content was selected as optimum plasma nitriding condition and to further increase both the thickness and surface hardness and the corrosion resistance of the hardened layer, different $CH_4$ content such as 1%, 3% and 5% was introduced into the plasma nitriding atmosphere. With 1% $CH_4$, the thickness of the hardened layer reached up to about $11{\mu}m$ and the surface hardness was measured as about $620Hv_{0.05}$, which is about 2.8 times that of as received sample. And the corrosion resistance of the plasma treated sample by using 1% $CH_4$ was improved significantly due to much higher pitting potential, and lower corrosion current density. When the $CH_4$ content was more than 1%, the thickness and surface hardness of the hardened layer decreased slightly and the corrosion resistance also decreased.

Plasma Assisted Nitriding of Stainless Steel Type 304L (304L 스테인리스 강의 플라즈마 질화처리)

  • Park, J.R.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.4
    • /
    • pp.255-265
    • /
    • 1995
  • Stainless steel type 304L has been nitrided in the low pressure (600Pa) and high nitrogen (80% $N_2$+20% $H_2$) environment for 5 hours by the square-wave-pulsed-d.c. plasma as a function of temperature $400{\sim}550^{\circ}C$ and pulsation. At the lower temperature range of $400{\sim}500^{\circ}C$ and at the relatively high ratio of pulse duration to pulse period. "S-phase" has been developed in the form of thin nitrided surface layer which has many cracks, leading to be nearly impossible for the industrial anti-wear and anti-corrosion applications. At the higher temperature up to $550^{\circ}C$ with the increasing ratio of the pulse duration to pulse period up to $50{\mu}s/100{\mu}s$, the nitrided layer, whose growth rate has increased also, has been composed mainly of CrN and $Fe_4N$ phases and has become thick, uniform and nearly crack-free.

  • PDF

The Study of Low Temperature Screen Plasma Nitriding Process on Chromium-Molybdenum Steel (스크린플라즈마 공정기술에 의한 저합금 금형강의 질화거동)

  • Kim, Sang-Gwon;Yeo, Guk-Hyeon;Lee, Jae-Hun;Kong, Jung-Hyun;Okumiya, Masahiro
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.294-295
    • /
    • 2014
  • 스크린 플라즈마 기술은 저온에서 가열과 동시에 플라즈마에 의한 확산층을 형성할 수 있는 매우 큰 장점을 가진 기술이다. 특히 저합금강의 내부 경도 저하를 최소화 한 상태에서 표면경도를 올려 플라스틱 금형강 등에 이를 적용할 수 있는 연구를 진행하였고, 이에 대한 결과를 보고하고자 한다.

  • PDF

Effects of Pre-Aging Treatment on the Corrosion Resistance of Low Temperature Plasma Nitrocarburized AISI 630 Martensitic Precipitation Hardening Stainless Steel (저온 플라즈마 침질탄화처리된 마르텐사이트계 석출경화형 스테인리스강의 내식성에 미치는 시효 전처리의 영향)

  • Lee, Insup;Lee, Chun-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.2
    • /
    • pp.43-52
    • /
    • 2020
  • Various aging treatments were conducted on AISI 630 martensitic precipitation hardening stainless steel in order to optimize aging condition. Aging treatment was carried out in the vacuum chamber of Ar gas with changing aging temperature from 380℃ to 430℃ and aging time from 2h to 8h at 400℃. After obtaining the optimized aging condition, several nitrocarburizing treatments were done without and with the aging treatment. Nitrocarburizing was performed on the samples with a gas mixture of H2, N2 and CH4 for 15 h at vacuum pressure of 4.0 Torr and discharge voltage of 400V. The corrosion resistance was improved noticeably by combined process of aging and nitrocarburizing treatment, which is attributed to higher chromium and nitrogen content in the passive layer, as confirmed by XPS analysis. The optimized condition is finalized as, 4h aging at 400℃ and then subsequent nitrocarburizing at 400℃ with 25% nitrogen and 4% methane gas for 15h at vacuum pressure of 4.0 Torr and discharge voltage of 400V, resulting in the surface hardness of around 1300 HV0.05 and α'N layer thickness of around 11 ㎛ respectively.

Martensitic Stainless Steel Nitrided in a Low-Pressure rf Plasma (RF플라즈마에 의한 마르텐사이트 스테인레스강의 질화에 관한 연구)

  • J.S. Yoo;S.K. Kim
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.69-69
    • /
    • 2001
  • We report a study of the nitriding of the martensitic grade of stainless steel AKSK 420 in a low-pressure rl discharge using pure nitrogen. Much studied samples of the austenitic grade AISI 304 were treated at the same time to provide a comparison. With a treatment time of 4.0 h at $400^{\circ}C$, the nitrogen-rich layer on MSK 420 is 20pm thick and has a hardness about 4.3 times higher than that of the untreated material. The layer thickness is much greater than that obtained on AISI 304 under identical treatment conditions, reflecting the different Cr content of the two alloys. The alloy AlISI 420 is more susceptible than AISI 304 to the formation of CrN and ferrite, and this has a deleterious effect on the hardnes, gain. Below the temperature at which CrN forms, the treated layer retains its martensitic structure, but with a larger lattice parameter than the bulk, a phase that we term expanded martensite, by analogy with the situation with austenitic stainless steel. The fact that the treated layer retains a martensitic structure is interesting in view of previous evidence that nitrogen is an austenite stabilizer.

  • PDF

Magnetic Tunnel Junctions with AlN and AlO Barriers

  • Yoon, Tae-Sick;Yoshimura, Satoru;Tsunoda, Masakiyo;Takahashi, Migaku;Park, Bum-Chan;Lee, Young-Woo;Li, Ying;Kim, Chong-Oh
    • Journal of Magnetics
    • /
    • v.9 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • We studied the magnetotransport properties of tunnel junctions with AlO and AlN barriers fabricated using microwave-excited plasma. The plasma nitridation process provided wider controllability than the plasma oxidization for the formation of MTJs with ultra-thin insulating layer, because of the slow nitriding rate of metal Al layers, comparing with the oxidizing rate of them. High tunnel magnetoresistance (TMR) ratios of 49 and 44% with respective resistance-area product $(R{\times}A) of 3 {\times} 10^4 and 6 {\times} 10^3 {\Omega}{\mu}m^2$ were obtained in the Co-Fe/Al-N/Co-Fe MTJs. We conclude that AlN is a hopeful barrier material to realize MTJs with high TMR ratio and low $R{\times}A$ for high performance MRAM cells. In addition, in order to clarify the annealing temperature dependence of TMR, the local transport properties were measured for Ta $50{\AA} /Cu 200 {\AA}/Ta 50 {\AA}/Ni_{76}Fe_{24} 20 {\AA}/Cu 50 {\AA}/Mn_{75}Ir_{25} 100 {\AA}/Co_{71}Fe_{29} 40 {\AA}/Al-O$ junction with $d_{Al}= 8 {\AA} and P_{O2}{\times}t_{0X}/ = 8.4 {\times} 10^4$ at various temperatures. The current histogram statistically calculated from the electrical current image was well in accord with the fitting result considering the Gaussian distribution and Fowler-Nordheim equation. After annealing at $340^{\circ}C$, where the TMR ratio of the corresponding MTJ had the maximum value of 44%, the average barrier height increased to 1.12 eV and its standard deviation decreased to 0.1 eV. The increase of TMR ratio after annealing could be well explained by the enhancement of the average barrier height and the reduction of its fluctuation.