• Title/Summary/Keyword: low-strength concrete

Search Result 1,248, Processing Time 0.029 seconds

A Study on the Basic Properties of Concrete and Low Heat-Blended Cement with Bottom Ash (바텀애시를 이용한 저발열 혼합시멘트 및 콘크리트의 기초물성에 관한 연구)

  • Kim, Won-Ki;Kim, Hoon-Sang;Kim, Hong-Joo;Lee, Won-Jun;Shin, Jin-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.685-688
    • /
    • 2008
  • This study has examined the effect of bottom ash(BA) on the properties of low heat-blended cement(LHC) and concrete. A number of binders were prepared by the replacement of LHC with BA in range of 5$^{\sim}$20wt%. The results showed that the final setting time of cement paste were delayed when the BA replaced part of the cement. However, The heat of hydration increased narrowly with adding BA in a early hydration period. The results also showed the inclusion of BA at replacement levels of 5$^{\sim}$10wt% resulted in an increase in compressive strength of the specimens compared with that of the control concrete and improved a resistance of concrete against the sulfate and chlorine ion.

  • PDF

Application assessments of concrete piezoelectric smart module in civil engineering

  • Zhang, Nan;Su, Huaizhi
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.499-512
    • /
    • 2017
  • Traditional structural dynamic analysis and Structural Health Monitoring (SHM) of large scale concrete civil structures rely on manufactured embedding transducers to obtain structural dynamic properties. However, the embedding of manufactured transducers is very expensive and low efficiency for signal acquisition. In dynamic structural analysis and SHM areas, piezoelectric transducers are more and more popular due to the advantages like quick response, low cost and adaptability to different sizes. In this paper, the applicable feasibility assessment of the designed "artificial" piezoelectric transducers called Concrete Piezoelectric Smart Module (CPSM) in dynamic structural analysis is performed via three major experiments. Experimental Modal Analysis (EMA) based on Ibrahim Time Domain (ITD) Method is applied to experimentally extract modal parameters. Numerical modal analysis by finite element method (FEM) modeling is also performed for comparison. First ten order modal parameters are identified by EMA using CPSMs, PCBs and FEM modeling. Comparisons are made between CPSMs and PCBs, between FEM and CPSMs extracted modal parameters. Results show that Power Spectral Density by CPSMs and PCBs are similar, CPSMs acquired signal amplitudes can be used to predict concrete compressive strength. Modal parameter (natural frequencies) identified from CPSMs acquired signal and PCBs acquired signal are different in a very small range (~3%), and extracted natural frequencies from CPSMs acquired signal and FEM results are in an allowable small range (~5%) as well. Therefore, CPSMs are applicable for signal acquisition of dynamic responses and can be used in dynamic modal analysis, structural health monitoring and related areas.

Design and fabrication of capsules with isotropic destruction intensity (등방 파괴 강도를 갖는 캡슐 설계 및 제작)

  • Lim, Tae-Uk;Cheng, Hao;Hu, Jie;Wang, Shu-Le;Jung, Won-Suk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.247-248
    • /
    • 2022
  • 3D printer-based self-healing capsules have been proposed to heal cracks by enabling various structural designs, repeatable fabrication, and strength analysis of the capsules. The Fusion Deposition Modeling (FDM) method was used to design, analyze, and produce new self-healing capsules that are widely used at low cost. However, PLA extruded from FDM has low interlayer adhesion energy, and thus strength varies depending on the angle of load applied to the laminated layer and the concrete structure, thereby degrading the performance of the self-healing capsule. Therefore, in this paper, the structure of the capsule manufactured by the FDM PLA method has isotropic strength was designed. In addition, the fracture strength in the x, y, and z directions of the load applied through the compression test was analyzed. As a result, it was confirmed that the newly proposed capsule design has an isotropic fracture strength of 1400% in all directions compared to the existing spherical thin-film capsule.

  • PDF

A Study on Tension Properties on Hybrid Fiber Reinforced Cement-Based Composit (하이브리드 섬유 보강 시멘트 복합체의 인장 특성에 관한 연구)

  • An, Young-Tae;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.340-343
    • /
    • 2004
  • The cement-based composites have been used for construction industry because of their economy, suitability for architecture and structure function, fire resistance, low fee of repair, easiness for acquisition. but the limited strain capacity of these makes them tension-weak, brittle, and considerable notch-sensitive. As one of solution, FRC(fiber reinforced concrete) have been investigated for regulating weakness of the cement-based composites. In these day different fiber types are proposed for better performance such as HFRC(hybrid fiber reinforced concrete). This study shows experimental results to search the ultimate strength, the ultimate mean strain, and the tension toughness of HFRC. The tension toughness is proportional to the amount of steel fiber and carbon fiber. In this experimental program we kept the total of steel fiber and carbon fiber as $1.0\%,\;1.5\%$, respectively.

  • PDF

Development of Precast Channel Structure Using Polymer Concrete (폴리머 콘크리트를 이용한 조립식 수로구조물 표준도 개발)

  • Park, Kwang-Soo;Shin, Su-Gyun;Kim, Kwan-Ho;Lee, Meyong-Won;Lee, Joon-Gu
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.157-160
    • /
    • 2002
  • This study was developed high-quality a large size precast channel structure using polymer concrete to improve quality of the product as well as to enhance construction quality. Practical precast channel structure design and manufacture procedure for the high polymer concrete were described in this paper. Precast PC represent the fastest growing segment of the polymer concrete industry. The fast curing, high strength, and low impermeability permit thin section and rapid reuse of moulds. Precast channel structure will carry out structural experiment and analysis.

  • PDF

3- D Analysis of Concrete Slab Track System (콘크리트 슬래브 궤도의 3차원 거동해석)

  • Kim, Jeong-Il;Jang, Seung-Yup
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.955-960
    • /
    • 2004
  • In this study, three dimensional FE analysis of concrete slab track has been performed in order to develop the realistic design of precast concrete slab track. The precast slab track system including the precast concrete slab panel and the grout layer is modeled using the three dimensional solid element with crack softening effect. The input load is computed from the one dimensional beam element model constituting the rail and several discrete springs. To investigate the effect of the longitudinal connection of slab panels, two different systems-continuous and discrete systems - are modeled. The analytical results show that the stresses of both the slab panel and the grout layer are in the range of linear elastic, and, at the interface between two adjacent panels, the primary stresses of the grout layer of the discrete system are higher than those of the continuous system. However, The overall stress levels of the grout layer are very low relative to the strength of th grout.

  • PDF

An Experimental Study on the Strength Characteristic of Recycled Concrete by Curing Method (재생콘크리트의 양생 방법별 강도 특성에 관한 실험적 연구)

  • Choi Maeng Ki;Park Hee Gon;Kim Kwang Ki;Jung Kwang Sic;Jung Kuen Ho;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.723-726
    • /
    • 2005
  • As the importance of recycled materials is being emphasized more in the Korean construction market, the production quality has been improved to a significantly high level. Compared to the high quality, however, there are used very limitedly. Among recycled construction materials, recycled aggregates produced through the retreatment of waste concrete are drawing attention because of lack of natural aggregate and heightened consciousness of resource saving and environmental protection and, as a consequence, they are close to natural aggregates in terms of production technology and quality. Despite the high quality and productivity, however,. the utilization of recycled aggregates is very low. Thus, in order to maximize the utility of recycled aggregates, the present study examined the usability of recycled aggregates using both recycled coarse aggregates and recycled fine aggregates together and derived optimal quantity and mixture ratio in the combined use of the two types of recycled aggregate.

  • PDF

Ductility Based Seismic Design of Circular R/C Bridge Piers (원형 철근콘크리트 교각의 연성도 내진설계)

  • Choi Jin Ho;Ko Seong Hyun;Hwang Jung Kil;Lee Jea Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.101-104
    • /
    • 2005
  • This study is to develop detailing guidelines based on ductility demand for reinforced concrete bridge columns in areas of low to moderate seismicity. The current seismic design criteria of the Korea Design Specifications for Highway Bridge (KDSHB 2005) adopted the seismic design concept and requirements of the AASHTO specifications. In order to obtain full ductile behavior under seismic loads, i.e. when applied seismic force is larger than design flexural strength of column section, a response modification factor (R=3 or 5) is used. In moderate seismicity regions, however, adopting the full ductility design concept sometimes results in construction problems due to reinforcement congestion. The objective of this paper is to suggest a new simplified seismic design of reinforced concrete bridge columns for moderate seismicity regions.

  • PDF

An Experimental Study on the Seawater Resistance of Steel Fiber Reinforced Concrete (강섬유보강콘크리트의 내해수성에 관한 실험적 연구)

  • 박승범;오광진;장석호;이봉춘
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.315-322
    • /
    • 1997
  • This paper describes an experimental study on the seawater resistance of steel fiber reinforced concrete. The test method adopted for this study may be devided into long-term immersion test and accelerated test by wetting and drying. Test were carried out to evaluate the procedure in which reduction in dynamic modulus, length change and compressive strength to nine months were measured. Resistance indicators are the water - cement ratio, the content of steel fiber, the immersion water(artificial seawater or freshwater). The conditions of intervals of immersing in artificial seawater and drying, low water-cement ratio, and non-steel fiber became most deteriorated.

  • PDF

Suitability Analysis of Slump and Slump Flow In the Fluidity Evaluation of Normal Strength Concrete (보통 콘크리트의 유동성평가에 슬럼프 및 슬럼프 플로우의 적합성 분석)

  • Song, Yuan-Lou;Zhao, Yang;Han, In-Deok;Han, Dong-Yeop;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.42-43
    • /
    • 2015
  • This study has analyze the suitable area of slump and slump flow among the fluidity evaluation of concrete by measuring slum and slump flow variation according to unit quantity and fine aggregate percentage in a low W/C mix. The fluidity of concrete can be expressed well with the slump value when sump value is 122mm or less. On the other hand, the fluidity of concrete can be expressed more accurately with slump flow value when slump is 122mm or greater.

  • PDF