• 제목/요약/키워드: low-rise structures

검색결과 344건 처리시간 0.027초

자율주행차량과 건축의 결합을 위한 고층 구조 시스템 제안 및 설계 적용 (Proposal and Design Application of High-Rise Structural System for Combining Autonomous Vehicles and Architecture)

  • 박상우;윤성원
    • 한국공간구조학회논문집
    • /
    • 제20권1호
    • /
    • pp.31-40
    • /
    • 2020
  • The purpose of this study is to propose future-oriented high-rise buildings where the vehicle is parked at the top of the building. At the same time, the vehicle is used as a part of the building along with the advent of the era of autonomous driving. The suspended structure is proposed as a suitable structural system for architectural planning. This system is free to design because there are no limitations on column planning compared to conventional designs. In particular, the low-floor plan can be used as an open space because colums are not arranged in the lower-floors. Thereby opened low-floor plan has advantages that visual perception of the space is improved, noise problems along the side of the street is solved and planning underground parking spaces are easier. These advantages can solve the problem of overlapping columns with vehicle traffic in the building. However, there are some problems that the suspension structure is mainly a formal form and the usable area is small compared to the core area because it is a core-oriented structural system. In this regard, a new structural system was proposed by combining the concept of suspended structure and cable stayed column. Therefore, this paper analyzes the existing style of high-rise housing suspended Structure and proposes a new structural system and the concept of design for autonomous vehicles.

Experimental and analytical study of a new seismic isolation device under a column

  • Benshuai Liang;Guangtai Zhang;Mingyang Wang;Jinpeng Zhang;Jianhu Wang
    • Earthquakes and Structures
    • /
    • 제24권6호
    • /
    • pp.415-428
    • /
    • 2023
  • Low-cost techniques with seismic isolation performance and excellent resilience need to be explored in the case of rural low-rise buildings because of the limited buying power of rural residents. As an inexpensive and eco-friendly isolation bearing, scrap tire pads (STPs) have the issue of poor resilience. Thus, a seismic isolation system under a column (SISC) integrated with STP needs to be designed for the seismic protection of low-rise rural buildings. The SISC, which is based on a simple exterior design, maintains excellent seismic performance, while the mechanical behavior of the internal STP provides elastic resilience. The horizontal behaviors of the SISC are studied through load tests, and its mechanical properties and the intrinsic mechanism of the reset ability are discussed. Results indicate that the average residual displacement ratio was 24.59%, and the reset capability was enhanced. Comparative experimental and finite element analysis results also show that the load-displacement relationship of the SISC was essentially consistent. The dynamic characteristics of isolated and fixed-base buildings were compared by numerical assessment of the response control effects, and the SISC was found to have great seismic isolation performance. SISC can be used as a low-cost base isolation device for rural buildings in developing countries.

Comparison of seismic progressive collapse distribution in low and mid rise RC buildings due to corner and edge columns removal

  • Karimiyan, Somayyeh
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.649-665
    • /
    • 2020
  • One of the most important issues in structural systems is evaluation of the margin of safety in low and mid-rise buildings against the progressive collapse mechanism due to the earthquake loads. In this paper, modeling of collapse propagation in structural elements of RC frame buildings is evaluated by tracing down the collapse points in beam and column structural elements, one after another, under earthquake loads and the influence of column removal is investigated on how the collapse expansion in beam and column structural members. For this reason, progressive collapse phenomenon is studied in 3-story and 5-story intermediate moment resisting frame buildings due to the corner and edge column removal in presence of the earthquake loads. In this way, distribution and propagation of the collapse in progressive collapse mechanism is studied, from the first element of the structure to the collapse of a large part of the building with investigating and comparing the results of nonlinear time history analyses (NLTHA) in presence of two-component accelograms proposed by FEMA_P695. Evaluation of the results, including the statistical survey of the number and sequence of the collapsed points in process of the collapse distribution in structural system, show that the progressive collapse distribution are special and similar in low-rise and mid-rise RC buildings due to the simultaneous effects of the column removal and the earthquake loads and various patterns of the progressive collapse distribution are proposed and presented to predict the collapse propagation in structural elements of similar buildings. So, the results of collapse distribution patterns and comparing the values of collapse can be utilized to provide practical methods in codes and guidelines to enhance the structural resistance against the progressive collapse mechanism and eventually, the value of damage can be controlled and minimized in similar buildings.

Comparison of seismic progressive collapse distribution in low and mid rise RC buildings due to corner and edge columns removal

  • Karimiyan, Somayyeh
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.691-707
    • /
    • 2020
  • One of the most important issues in structural systems is evaluation of the margin of safety in low and mid-rise buildings against the progressive collapse mechanism due to the earthquake loads. In this paper, modeling of collapse propagation in structural elements of RC frame buildings is evaluated by tracing down the collapse points in beam and column structural elements, one after another, under earthquake loads and the influence of column removal is investigated on how the collapse expansion in beam and column structural members. For this reason, progressive collapse phenomenon is studied in 3-story and 5-story intermediate moment resisting frame buildings due to the corner and edge column removal in presence of the earthquake loads. In this way, distribution and propagation of the collapse in progressive collapse mechanism is studied, from the first element of the structure to the collapse of a large part of the building with investigating and comparing the results of nonlinear time history analyses (NLTHA) in presence of two-component accelograms proposed by FEMA_P695. Evaluation of the results, including the statistical survey of the number and sequence of the collapsed points in process of the collapse distribution in structural system, show that the progressive collapse distribution are special and similar in low-rise and mid-rise RC buildings due to the simultaneous effects of the column removal and the earthquake loads and various patterns of the progressive collapse distribution are proposed and presented to predict the collapse propagation in structural elements of similar buildings. So, the results of collapse distribution patterns and comparing the values of collapse can be utilized to provide practical methods in codes and guidelines to enhance the structural resistance against the progressive collapse mechanism and eventually, the value of damage can be controlled and minimized in similar buildings.

Performance of structures and infrastructure facilities during an EF4 Tornado in Yancheng

  • Tao, Tianyou;Wang, Hao;Yao, Chengyuan;Zou, Zhongqin;Xu, Zidong
    • Wind and Structures
    • /
    • 제27권2호
    • /
    • pp.137-147
    • /
    • 2018
  • Heavy damages to properties with attendant losses were frequently caused by tornadoes in recent years. This natural hazard is one of the most destructive wind events that must be fully studied and well understood in order to keep the safety of structures and infrastructure facilities. On June 23, 2016, a severe tornado, which is an Enhanced Fujita (EF) 4 storm, occurred in the rim of a coastal city named as Yancheng in China. Numerous low-rise buildings as well as facilities (e.g., transmission towers) were destroyed or damaged. In this paper, damages to structures and infrastructure facilities by the severe tornado are reviewed. The collapses of residential buildings, industrial structures and other infrastructure facilities are described. With an overview of the damages, various possible mechanisms of the collapse are then discussed and utilized to reveal the initiation of the damage to various facilities. It is hoped that this paper can provide a concise but comprehensive reference for the researchers and engineers to help understand the tornado effects on structures and expose the vulnerabilities that need to be improved in current wind-resistant design practices.

Simplified elastic design checks for torsionally balanced and unbalanced low-medium rise buildings in lower seismicity regions

  • Lam, Nelson T.K.;Wilson, John L.;Lumantarna, Elisa
    • Earthquakes and Structures
    • /
    • 제11권5호
    • /
    • pp.741-777
    • /
    • 2016
  • A simplified approach of assessing torsionally balanced (TB) and torsionally unbalanced (TU) low-medium rise buildings of up to 30 m in height is presented in this paper for regions of low-to-moderate seismicity. The Generalised Force Method of Analysis for TB buildings which is illustrated in the early part of the paper involves calculation of the deflection profile of the building in a 2D analysis in order that a capacity diagram can be constructed to intercept with the acceleration-displacement response spectrum diagram representing seismic actions. This approach of calculation on the planar model of a building which involves applying lateral forces to the building (waiving away the need of a dynamic analysis and yet obtaining similar results) has been adapted for determining the deflection behaviour of a TU building in the later part of the paper. Another key original contribution to knowledge is taking into account the strong dependence of the torsional response behaviour of the building on the periodic properties of the applied excitations in relation to the natural periods of vibration of the building. Many of the trends presented are not reflected in provisions of major codes of practices for the seismic design of buildings. The deflection behaviour of the building in response to displacement controlled (DC) excitations is in stark contrast to behaviour in acceleration controlled (AC), or velocity controlled (VC), conditions, and is much easier to generalise. Although DC conditions are rare with buildings not exceeding 30 m in height displacement estimates based on such conditions can be taken as upper bound estimates in order that a conservative prediction of the displacement profile at the edge of a TU building can be obtained conveniently by the use of a constant amplification factor to scale results from planar analysis.

소형 경량판넬을 이용한 차음성능 영향요인별 음향감쇠계수 분석 (Characteristics of Sound Reduction Index through Small Sized Lightweight Panel)

  • 양홍석;김명준;정갑철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.138-147
    • /
    • 2007
  • Recently, framed structure is increasingly being used as apartment structure due to the advantages during remodeling. Therefore, the use of lightweight panel as separating wall is increasing. To construct lightweight panel structures with sound insulation performance appropriate to the conditions of each field, measurement of sound reduction index(SRI) through panel structures should be performed. In this study, measurement of SRI through 46 kinds of panel structures was performed in the condition of various factors such as surface density, air space and absorber. The result showed that SRI of panel structures was generally higher by increasing of surface density. In the case of double panel with no absorber, SRI at below critical frequency was gradually increased according to rise of air space. Double panel with absorber make remarkable improvement in SRI at low frequency, but there is a little difference compared with SRI of double panel with no absorber over critical frequency.

  • PDF

Optimum seismic design of reinforced concrete frame structures

  • Gharehbaghi, Sadjad;Moustafa, Abbas;Salajegheh, Eysa
    • Computers and Concrete
    • /
    • 제17권6호
    • /
    • pp.761-786
    • /
    • 2016
  • This paper proposes an automated procedure for optimum seismic design of reinforced concrete (RC) frame structures. This procedure combines a smart pre-processing using a Tree Classification Method (TCM) and a nonlinear optimization technique. First, the TCM automatically creates sections database and assigns sections to structural members. Subsequently, a real valued model of Particle Swarm Optimization (PSO) algorithm is employed in solving the optimization problem. Numerical examples on design optimization of three low- to high-rise RC frame structures under earthquake loads are presented with and without considering strong column-weak beam (SCWB) constraint. Results demonstrate the effectiveness of the TCMin seismic design optimization of the structures.

뇌보호시스템에서 인하도선의 효과적인 설치기법 (Effective Installation Methods of Down Conductors in Lightning Protection Systems)

  • 이복희;엄주홍;이승칠;강성만
    • 조명전기설비학회논문지
    • /
    • 제16권4호
    • /
    • pp.8-14
    • /
    • 2002
  • 현대의 뇌보호시스템은 낙뢰로 인한 감전이나 건축물, 전기·전자기기의 파손과 같은 위험성을 제거하는 것이 요구되지만 종래의 뇌보호설비는 단지 인명의 피해나 건축물을 보호하는 것이 주된 역할이었다. 오늘날 컴퓨터, 정보통신설비 등을 효과적으로 보호할 수 있는 뇌보호설비가 필수적 요건으로 대두되었다. 본 논문에서는 뇌과전압으로부터 컴퓨터와 전자장비를 보호할 수 있는 기술을 개발할 목적으로 인하도선의 종류와 설치기법에 따라서 인하도선에 유도되는 전위상승 억제에 대한 연구를 수행하였다. 그 결과 인하도선의 전위상승에 의한 측면방전과 위험성을 줄이기 위해서는 인하도선으로 낮은 특성임피던스를 가지는 동축케이블이 적당하며, 인하도선과 금속관을 상단과 하단에서 본딩하는 방법이 효과가 높게 나타났다.

Collapse response assessment of low-rise buildings with irregularities in plan

  • Manie, Salar;Moghadam, Abdoreza S.;Ghafory-Ashtiany, Mohsen
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.49-71
    • /
    • 2015
  • The present paper aims at evaluating damage and collapse behavior of low-rise buildings with unidirectional mass irregularities in plan (torsional buildings). In previous earthquake events, such buildings have been exposed to extensive damages and even total collapse in some cases. To investigate the performance and collapse behavior of such buildings from probabilistic points of view, three-dimensional three and six-story reinforced concrete models with unidirectional mass eccentricities ranging from 0% to 30% and designed with modern seismic design code provisions specific to intermediate ductility class were subjected to nonlinear static as well as extensive nonlinear incremental dynamic analysis (IDA) under a set of far-field real ground motions containing 21 two-component records. Performance of each model was then examined by means of calculating conventional seismic design parameters including the response reduction (R), structural overstrength (${\Omega}$) and structural ductility (${\mu}$) factors, calculation of probability distribution of maximum inter-story drift responses in two orthogonal directions and calculation collapse margin ratio (CMR) as an indicator of performance. Results demonstrate that substantial differences exist between the behavior of regular and irregular buildings in terms of lateral load capacity and collapse margin ratio. Also, results indicate that current seismic design parameters could be non-conservative for buildings with high levels of plan eccentricity and such structures do not meet the target "life safety" performance level based on safety margin against collapse. The adverse effects of plan irregularity on collapse safety of structures are more pronounced as the number of stories increases.