• 제목/요약/키워드: low-power design

검색결과 3,542건 처리시간 0.029초

2.4GHz 고이득 저잡음 증폭기 설계 (Design of High Gain Low Noise Amplifier)

  • 손주호;최석우;윤창훈;김동용
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(2)
    • /
    • pp.309-312
    • /
    • 2002
  • In this paper, we discuss the design of high gain low noise amplifier by using the 0.2sum CMOS technology. A cascode inverter is adopted to implement the low noise amplifier. The proposed cascode inverter LNA is one stage amplifier with a voltage reference and without choke inductors. The designed 2.4GHz LNA achieves a power gain of 25dB, a noise figure of 2.2dB, and power consumption of 255㎽ at 2.5V power supply.

  • PDF

A Minimal Power Scheduling Algorithm for Low Power Circuit Design

  • Lin, Chi-Ho
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.212-215
    • /
    • 2002
  • In this paper, we present an intermediate representation CDFG(Control Data Flow Graph) and an efficient scheduling technique for low power circuit design. The proposed CDFG represents control flow, data dependency and such constraints as resource constraints and timing constraints. In the scheduling technique, the constraints are substituted by subgraphs, and then the number of subgraphs is minimized by using the inclusion and overlap relation efficiently. Also, iterative rescheduling process are performed in a minimum bound estimation, starting with the as soon as possible as scheduling result, so as to reduce the power consumption in low power design. The effectiveness of the proposed algorithm has been proven by the experiment with the benchmark examples.

  • PDF

낮은 저항의 IH 전용용기를 가열할 수 있는 유도 가열 컨버터와 코일 설계 (Design Methodology of Series Resonant Converter and Coil of Induction Heating Applications for Heating Low Resistance IH-Only Container)

  • 정시훈;박화평;정지훈
    • 전력전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.24-31
    • /
    • 2018
  • An induction heating (IH) resonant converter, as well as its coil design method, is proposed in this study to improve the heat capability of low- and high-resistance IH vessels. Conventional IH resonant converters have been designed only for heating high-resistance containers designed for IH application. Thus, the primary current in the resonant tank becomes extremely high to transfer the rated power when the converter heats the low-resistance vessel. As a result, the rated power cannot be transferred due to overcurrent flows against the rated switch current. Hence, the optimal number of coil turns and proper operating frequency to heat high- and low-resistance vessels are proposed in this study by analyzing an IH load model. Simulation and experimental results using a 2.4 kW prototype resonant converter and its IH coil validate the proposed design.

노화효과를 고려한 저전력 셀프 튜닝 디지털 시스템의 설계 (Design of a Low Power Self-tuning Digital System Considering Aging Effects)

  • 이진경;김경기
    • 대한임베디드공학회논문지
    • /
    • 제13권3호
    • /
    • pp.143-149
    • /
    • 2018
  • It has become ever harder to design reliable circuits with each nanometer technology node; under normal operation conditions, a transistor device can be affected by various aging effects resulting in performance degradation and eventually design failure. The reliability (aging) effect has traditionally been the area of process engineers. However, in the future, even the smallest of variations can slow down a transistor's switching speed, and an aging device may not perform adequately at a very low voltage. Therefore, circuit designers need to consider these reliability effects in the early stages of design to make sure there are enough margins for circuits to function correctly over their entire lifetime. However, such an approach excessively increases the size and power dissipation of a system. As the impact of reliability, new techniques in designing aging-resilient circuits are necessary to reduce the impact of the aging stresses on performance, power, and yield or to predict the failure of a system. Therefore, in this paper, a novel low power on-chip self-tuning circuit considering the aging effects has been proposed.

Long range-based low-power wireless sensor node

  • Komal Devi;Rita Mahajan;Deepak Bagai
    • ETRI Journal
    • /
    • 제45권4호
    • /
    • pp.570-580
    • /
    • 2023
  • Sensor nodes are the most significant part of a wireless sensor network that offers a powerful combination of sensing, processing, and communication. One major challenge while designing a sensor node is power consumption, as sensor nodes are generally battery-operated. In this study, we proposed the design of a low-power, long range-based wireless sensor node with flexibility, a compact size, and energy efficiency. Furthermore, we improved power performance by adopting an efficient hardware design and proper component selection. The Nano Power Timer Integrated Circuit is used for power management, as it consumes nanoamps of current, resulting in improved battery life. The proposed design achieves an off-time current of 38.17309 nA, which is tiny compared with the design discussed in the existing literature. Battery life is estimated for spreading factors (SFs), ranging from SF7 to SF12. The achieved battery life is 2.54 years for SF12 and 3.94 years for SF7. We present the analysis of current consumption and battery life. Sensor data, received signal strength indicator, and signal-to-noise ratio are visualized using the ThingSpeak network.

산업용 모터 구동을 위한 고내압 저전력 Power MOSFET 최적화 설계에 관한 연구 (A Study on High-voltage Low-power Power MOSFET of Optimization for Industrial Motor Drive)

  • 김범준;정헌석;김성종;정은식;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제25권3호
    • /
    • pp.170-175
    • /
    • 2012
  • Power MOSFET is develop in power savings, high efficiency, small size, high reliability, fast switching, low noise. Power MOSFET can be used high-speed switching transistors devices. Recently attention to the motor and the application of various technologies. Power MOSFET is devices the voltage-driven approach switching devices are design to handle on large power, power supplies, converters, motor controllers. In this paper, design the 600 V Planar type, and design the trench type for realization of low on-resistance. For both structures, by comparing and analyzing the results of the simulation and characterization.

영구자석을 이용한 저전력형 MR 감쇠기의 설계 (The design of low-power MR damper using permanent magnet)

  • 김정훈;오준호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.433-439
    • /
    • 2000
  • Lots of semi-active control devices have been developed in recent years because they have the best features of passive and active system. Especially, controllable magneto-rheological(MR) fluid devices have received significant attention in these area of research. The MR fluid is the material that reversibly changes from a free-flowing, linear viscous fluid to a semisolid with a controllable yield strength in milliseconds when exposed to a magnetic field. If the magnetic field is induced by moving a permanent magnet instead of applying current to a solenoid, it is possible to design a MR damper consuming low power because the power consumption is reduced at steady state. This paper proposes valve mode MR damper using permanent magnetic circuit that has wide range of operation with low power consumption and small size. To design a MR damper that has a large maximum dissipating torque and a low damping coefficient, a design parameter is adopted. The magnetic circuit, material of choke and choke type are selected experimentally with the design parameter. The behaviors of the damper are examined and torque tracking control using PID feedback controller is performed for step, ramp and sinusoidal trajectories.

  • PDF

저전압 저전력 비교기 설계기법 (Low-voltage low-power comparator design techniques)

  • 이호영;곽명보;이승훈
    • 전자공학회논문지A
    • /
    • 제33A권5호
    • /
    • pp.212-221
    • /
    • 1996
  • A CMOS comparator is designed for low voltage and low power operations. The proposed comparator consists of a preadmplifier followed by a regenerative latch. The preasmplifier reduces the power consumption to a half with the power-down mode and the dynamic offsets of the latch, which is affected by each device mismatch, is statistically analyzed. The circuit is designed and simulated using a 0.8.mu.m n-well CMOS process and the dissipated power is 0.16mW at a 20MHz clock speed based on a 3V supply.

  • PDF

Design of Low-Power and Low-Latency 256-Radix Crossbar Switch Using Hyper-X Network Topology

  • Baek, Seung-Heon;Jung, Sung-Youb;Kim, Jaeha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권1호
    • /
    • pp.77-84
    • /
    • 2015
  • This paper presents the design of a low-power, low area 256-radix 16-bit crossbar switch employing a 2D Hyper-X network topology. The Hyper-X crossbar switch realizes the high radix of 256 by hierarchically combining a set of 4-radix sub-switches and applies three modifications to the basic Hyper-X topology in order to mitigate the adverse scaling of power consumption and propagation delay with the increasing radix. For instance, by restricting the directions in which signals can be routed, by restricting the ports to which signals can be connected, and by replacing the column-wise routes with diagonal routes, the fanout of each circuit node can be substantially reduced from 256 to 4~8. The proposed 256-radix, 16-bit crossbar switch is designed in a 65 nm CMOS and occupies the total area of $0.93{\times}1.25mm^2$. The simulated worst-case delay and power dissipation are 641 ps and 13.01 W when operating at a 1.2 V supply and 1 GHz frequency. In comparison with the state-of-the-art designs, the proposed crossbar switch design achieves the best energy-delay efficiency of $2.203cycle/ns{\cdot}fJ{\cdot}{\lambda}2$.

Low-Swing 기술을 이용한 저 전력 병렬 곱셈기 설계 (Design of a Low-Power Parallel Multiplier Using Low-Swing Technique)

  • 강장희;김정범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.79-82
    • /
    • 2003
  • This paper describes a new low-swing inverter for low power consumption. To reduce a power consumption, an output voltage swing is in the range from 0 to $V_{ref}-V_{TH}$, where $V_{ref}=V_{DD}-nV_{TH}$. This can be done by the inverter structure that allow a full swing or a swing on its input terminal without leakage current. Using this low-swing voltage technology, we propose a low-power $4\times4$ bit parallel multiplier. The proposed circuits are simulated with HSPICE under $0.35{\mu}m$ CMOS standard technology. Compare to the previous works, this circuit can reduce the power consumption rate of 11.2% and the power-delay product of 10.3%.

  • PDF