• Title/Summary/Keyword: low-field nuclear magnetic

Search Result 32, Processing Time 0.016 seconds

NMR Studies on the Structure of Human Annexin I

  • Han, Hee-Yong;Bang, Keun-Su;Na, Doe-Sun;Lee, Bong-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.182-182
    • /
    • 1996
  • Annexin I is a member of the annexin family of calcium dependent phospholipid binding proteins and has anti-inflammatory activity by inhibiting phospholipase A$_2$ (PLA$_2$). Recent X-ray crystallographic study of annexin I identified six Ca$\^$2+/ binding bites, which was different types (type II, III) from the well-known EF-hand motif (type I). In this work, the structure of annexin I was studied at atomic level by using $^1$H, $\^$15/N and $\^$l3/C NMR(nuclear magnetic resonance) spectroscopy, and the effect of Ca$\^$2+/ binding on the structure of annexin I was studied, and compared with that of Mg$\^$2+/ binding, When Ca$\^$2+/ was added to annexin I, NMR peak change was occured in high- and low-field regions of $^1$H-NMR spectra. NMR peak change by Ca$\^$2+/ binding was different from that by Mg$\^$2+/ binding. Because annexin I is a larger protein with 35 kDa molecular weight, site-specific (amide-$\^$15/N, carbonyl-$\^$l3/C) labeling technique was also used. We were able to detect methionine, tyrosine and phenylalanine peaks respectively in $\^$13/C-NMR spectra, and each residue was able to be assigned by the method of doubly labeling annexin I with [$\^$13/C] carbonyl-amino acid and [$\^$15/N] amide-amino acid. In $\^$l3/C-NMR spectra of [$\^$13/C] carbonyl-Met labeled annexin I, we observed that methionine residues spatially located near Ca$\^$2+/ binding Sites Were Significantly effected by Ca$\^$2+/ binding. From UV spectroscopic data on the effect of Ca$\^$2+/ binding, we knew that Ca$\^$2+/ binding sites of annexin I have cooperativity in Ca$\^$2+/ binding. The interaction of annexin I with PLA$_2$ also could be detected by using heteronuclear NMR spctroscopy. Consequently, we expect that the anti-inflammatory action mechanism of annexin I may be a specific protein-protein interaction. The residues involved in the interaction with PLA$_2$ can be identified as active site by assigning NMR peaks effected by PLA$_2$ binding.

  • PDF

Effect of bamboo shoot dietary fiber on gel properties, microstructure and water distribution of pork meat batters

  • Li, Ke;Liu, Jun-Ya;Fu, Lei;Zhao, Ying-Ying;Zhu, He;Zhang, Yan-Yan;Zhang, Hua;Bai, Yan-Hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1180-1190
    • /
    • 2020
  • Objective: To develop healthier comminuted meat products to meet consumer demand, the gel properties, rheological properties, microstructure and water distribution of pork meat batters formulated with various amounts of bamboo shoot dietary fiber (BSDF) were investigated. Methods: Different levels of BSDF (0% to 4%) were added to pork batters, and the pH, color, water-holding capacity, texture and rheological properties of pork batters were determined. Then, pork batters were analyzed for their microstructure and water distribution using scanning electron microscopy (SEM) and low-field nuclear magnetic resonance (LF-NMR). Results: Compared with the control, BSDF addition into meat batters showed a significant reduction in L*-value and a significant increase in b*-value (p<0.05). BSDF addition of up to 4% reduced the pH value of pork batters by approximately 0.15 units; however, the cooking loss and expressible water loss decreased significantly (p<0.05) with the increased addition of BSDF. The hardness and gel strength were noticeably enhanced (p<0.05) as the content of BSDF increased. The rheological results showed that BSDF added into pork batters produced higher storage modulus (G') and loss modulus (G") values. The SEM images suggested that the addition of BSDF could promote pork batters to form a more uniform and compact microstructure. The proportion of immobilized water increased significantly (p<0.05), while the population of free water was decreased (p<0.05), indicating that BSDF improved the water-holding capability of pork batters by decreasing the fraction of free water. Conclusion: BSDF could improve the gel properties, rheological properties and water distribution of pork meat batters and decrease the proportion of free water, suggesting that BSDF has great potential as an effective binder in comminuted meat products.