• Title/Summary/Keyword: low-exposure camera

Search Result 30, Processing Time 0.024 seconds

Color Enhancement of Low Exposure Images using Histogram Specification and its Application to Color Shift Model-Based Refocusing

  • Lee, Eunsung;Kang, Wonseok;Kim, Sangjin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.8-16
    • /
    • 2012
  • An image obtained from a low light environment results in a low-exposure problem caused by non-ideal camera settings, i.e. aperture size and shutter speed. Of particular note, the multiple color-filter aperture (MCA) system inherently suffers from low-exposure problems and performance degradation in its image classification and registration processes due to its finite size of the apertures. In this context, this paper presents a novel method for the color enhancement of low-exposure images and its application to color shift model-based MCA system for image refocusing. Although various histogram equalization (HE) approaches have been proposed, they tend to distort the color information of the processed image due to the range limits of the histogram. The proposed color enhancement algorithm enhances the global brightness by analyzing the basic cause of the low-exposure phenomenon, and then compensates for the contrast degradation artifacts by using an adaptive histogram specification. We also apply the proposed algorithm to the preprocessing step of the refocusing technique in the MCA system to enhance the color image. The experimental results confirm that the proposed method can enhance the contrast of any low-exposure color image acquired by a conventional camera, and is suitable for commercial low-cost, high-quality imaging devices, such as consumer-grade camcorders, real-time 3D reconstruction systems, digital, and computational cameras.

  • PDF

Recent Development in Low Dose Nuclear Medicine Gamma Camera Imaging (저선량 핵의학 감마카메라 영상장치의 최근 발전)

  • Hwang, Kyung Hoon;Lee, Byeong-il;Kim, Yongkwon;Lee, Haejun;Sun, Yong Han
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.123-127
    • /
    • 2015
  • Recently, new gamma camera systems enabling low radiation dose imaging have been developed. We reviewed the recent development of these low dose gamma camera systems including high sensitivity detectors, device structures, noise reduction filters, efficient image reconstruction algorithms, low dose protocols, and so on. It is expected that further technological advances reduce both radiation dose and imaging time in gamma camera imaging especially for radiation-sensitive patients such as pediatric patients.

Development of a Low-cost Lighting System for Line-acan Camera (라인 스캔 카메라를 위한 저가형 시 균일 조명장치 구현)

  • Kim, Hong-Gap;Kim, Hyeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.235-240
    • /
    • 2000
  • A low cost lighting system for line-scan cameras has been developed with 3-phase power. When exposure time of line-scan camera is shorter than fluctuation period of illumination, the average gray value of each acquired 1-D image varies. Detecting defects on the objects's surface under such illuminating environment is very difficult. The proposed lighting system is composed of low-cost fluorescent lights based on 3-phase power. The specially designed lighting pack and the properly selected lighting position enable to get the rippleless lighting. The principle of the proposed lighting system has been explained analytically. The lighting system has been tested for fabric inspection with line-scan camera and it's efficacy has been proved.

  • PDF

Real-Time Hardware Design of Image Quality Enhancement Algorithm using Multiple Exposure Images (다중 노출 영상을 이용한 영상의 화질 개선 알고리즘의 실시간 하드웨어 설계)

  • Lee, Seungmin;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1462-1467
    • /
    • 2018
  • A number of algorithms for improving the image quality of low light images have been studied using a single image or multiple exposure images. The low light image is low in contrast and has a large amount of noise, which limits the identification of information of the subject. This paper proposes the hardware design of algorithms that improve the quality of low light image using 2 multiple exposure images taken with a dual camera. The proposed hardware structure is designed in real time processing in a way that does not use frame memory and line memory using transfer function. The proposed hardware design has been designed using Verilog and validated in Modelsim. Finally, when the proposed algorithm is implemented on FPGA using xc7z045-2ffg900 as the target board, the maximum operating frequency is 167.617MHz. When the image size is 1920x1080, the total clock cycle time is 2,076,601 and can be processed in real time at 80.7fps.

Slow Sync Image Synthesis from Short Exposure Flash Smartphone Images (단노출 플래시 스마트폰 영상에서 저속 동조 영상 생성)

  • Lee, Jonghyeop;Cho, Sunghyun;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.1-11
    • /
    • 2021
  • Slow sync is a photography technique where a user takes an image with long exposure and a camera flash to enlighten the foreground and background. Unlike short exposure with flash and long exposure without flash, slow sync guarantees the bright foreground and background in the dim environment. However, taking a slow sync image with a smartphone is difficult because the smartphone camera has continuous and weak flash and can not turn on flash if the exposure time is long. This paper proposes a deep learning method that input is a short exposure flash image and output is a slow sync image. We present a deep learning network with a weight map for spatially varying enlightenment. We also propose a dataset that consists of smartphone short exposure flash images and slow sync images for supervised learning. We utilize the linearity of a RAW image to synthesize a slow sync image from short exposure flash and long exposure no-flash images. Experimental results show that our method trained with our dataset synthesizes slow sync images effectively.

COMPARATIVE STUDY OF DIRECT DIGITAL RADIOGRAPHIC SYSTEM WITH FILM-BASED DIGITAL IMAGING SYSTEM USING EKTASPEED AND EKTASPEED PLUS FILM (직접 디지탈 방사선 촬영시스템과 Ektaspeed 및 Ektaspeed Plus 필름을 이용한 방사선 사진용 디지탈 영상시스템과의 비교 연구)

  • Do Jung-Joo;Kim Eun-Kyung
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.25 no.1
    • /
    • pp.51-70
    • /
    • 1995
  • The purpose of this investigation was to compare the direct digital radiographic system with film-based digital imaging system using Ektaspeed and Ektaspeed Plus film with respect to image characteristics and detectability and evaluate the sensor noise with the use of subtraction method. Direct digital radiographic system which used was Sens-A-Ray system(Regam Medical Systems, Sundsvall, Sweden) and film-based digital imaging system was composed of Macintosh II ci computer, high resolution Sony XC-77 CCD camera and intraoral x-ray film(Kodak Ektaspeed film, Kodak Ektaspeed Plus film). Images were taken by using CCD sensor of Sens-A-Ray system, Ektaspeed film and Ektaspeed Plus film with variable exposure time(0.06s, 0.1s, 0.16s, 0.2s, 0.3s, 0.4s, 0.5s, 0.6s, O.8s, LOs), 5 times at each exposure time. And then ektaspeed films and ektaspeed plus films were digitized using CCD camera. Image groups were divided into 3 groups; Sens-A-Ray group(direct digital radiographic system), Ektaspeed group and Ektaspeed Plus group (film-based digital imaging system) They were assessed by the following three aspects; image density, image contrast and detectability and sensor noise of Sens-A-Ray system was also evaluated. The results were as follow : 1. S group showed higher density than E , EP group except at the low exposure time(p<0.01). 2. S group showed higher contrast than E,EP group except at the high exposure time(p<0.01). 3. All groups showed good detectability at the each proper exposure time. Lowest exposure time which shows maximum detectability in S,EP group(0.5s) was lower than that in E group(0.6s). 4. Sensor noise of Sens-A-Ray system generally increased according to exposure time. On the basis of the above results, it was considered that Sens-A-Ray system could show higher speed, higher contrast than Ektaspeed, Ektaspeed Plus film except at too high and low exposure time and the same detectability as the conventional intraoral film.

  • PDF

A Study on the Optimized Test Condition of Lock-in IR Thermography by Image Processing

  • Cho, Yong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.276-283
    • /
    • 2012
  • In this study, it was studies the utilization of LIT(lock-in infrared thermography) which can detect defects in welded parts of ship and offshore structures. Quantitative analysis was used through methods of filtering and texture measurement of image processing techniques to find the optimized experimental condition. We verified reliability in our methods by applying image processing techniques in order to normalize evaluations of comparative images that show phase difference. In addition, low to mid exposure showed good results whereas high exposure did not provide significant results in regards to intensity of light exposure on surface. Lock-in frequency was satisfactory around 0.1 Hz regardless of intensity of light source we had. In addition, having the integration time of thermography camera inversely proportional to intensity of exposed light source during the experiment allowed good outcome of results.

EXPERIMENTAL STUDY ON QUANTITATIVE EVALUATION OF FILM-BASED DIGITAL IMAGING SYSTEM (방사선사진용 디지털 영상시스템의 정량적 평가에 관한 실험적 연구)

  • Cho Heang-Hee;Kim Eun-Kyung
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.24 no.1
    • /
    • pp.137-147
    • /
    • 1994
  • A digital imaging system using Machintosh Ⅱ ci computer, high resolution Sony XC-77 CCD camera, Quickcapture Frame Grabber Board was evaluated for quantitative analysis of standardized periapical film with aluminum step wedge. The results were as follows: 1. Correlation between Al thickness and gray level was high-positively associated(r²=0.99, p<0.001). 2. Correlation between measured weight of experimental lesion and estimated relative lesion volume by digital subtracted radiography was also high-positively associated (r²=0.98, p<0.001). 3. As exposure time was increased, mean gray level was decreased(p<0.01) and slope of regression line between Al thickness and gray level was also decreased (p<0.01). And when the exposure time was shorter than 0.2 second, the value of r² was relatively low. On the basis of the above results, it is considered that this digital imaging system using a Macintosh Ⅱ ci computer & a high resolution CCD monochrome camera will be useful in evaluating digitized image from standardized periapical film quantitatively.

  • PDF

THE BOES CCD CAMERA II. CHARACTERISTICS OF THE CCD (BOES CCD 카메라 II. 카메라의 특성)

  • Park, B.G.;Seong, H.C.;Jang, J.G.;Jang, B.H.;Lee, B.C.;Park, Y.H.;Kim, K.M.;Han, I.
    • Publications of The Korean Astronomical Society
    • /
    • v.18 no.1
    • /
    • pp.75-79
    • /
    • 2003
  • The characteristics of the BOES (Bohyunsan Observatory Echelle Spectrograph) CCD camera is presented. In order to get optimum gain and readout noise of the CCD, we examine the variation of the gain and readout noise by changing the value of output drain voltage of the CCD and measuring the gain using transfer curve, which is defined as the plot of variance versus mean exposure level of a homogeneous light onto the CCD surface. The gain and readout noises are optimised to be 0.5e$^-$/ADU and 3e$^-$, which is good for highest signal-to-noise ratio and contrast for the low light level characteristics of the BOES. We also measure the dark count of the CCD by getting five dark images with 3600 seconds exposure time. The mean dark count from median stacked dark images is essentially zero. A table of positions of defected pixels is also presented.

Design of a PIV objective maximizing the image signal-to-noise ratio

  • Chetelat Olivier;Kim Kyung Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.123-137
    • /
    • 2001
  • PIV (particle image velocimetry) systems use a camera to take snapshots of particles carried by a fluid at some precise instants. Signal processing methods are then used to compute the flow velocity field. In this paper, the design of the camera objective (optics) is addressed. The optimization is done in order to maximize the signal-to-noise ratio of in-focus particles. Four different kinds of noise are considered: photon shot noise, thermal and read noise, background glow shot noise, and noise made by the other particles. A semi-empirical model for the lens aberrations of a two-doublet objective is first addressed, since further, it is shown that lens aberrations (low f-value $f_{\#}$) should be used instead of the Fraunhofer diffraction (high f-value) for the fitting of the particle image size with the pixel size. Other important conclusions of the paper include the expression of optimum values for the magnification M, for the exposure period $\tau$ and for the pixel size $\xi$.

  • PDF