• Title/Summary/Keyword: low-complexity

Search Result 1,865, Processing Time 0.031 seconds

CA Joint Resource Allocation Algorithm Based on QoE Weight

  • LIU, Jun-Xia;JIA, Zhen-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2233-2252
    • /
    • 2018
  • For the problem of cross-layer joint resource allocation (JRA) in the Long-Term Evolution (LTE)-Advanced standard using carrier aggregation (CA) technology, it is difficult to obtain the optimal resource allocation scheme. This paper proposes a joint resource allocation algorithm based on the weights of user's average quality of experience (JRA-WQOE). In contrast to prevalent algorithms, the proposed method can satisfy the carrier aggregation abilities of different users and consider user fairness. An optimization model is established by considering the user quality of experience (QoE) with the aim of maximizing the total user rate. In this model, user QoE is quantified by the mean opinion score (MOS) model, where the average MOS value of users is defined as the weight factor of the optimization model. The JRA-WQOE algorithm consists of the iteration of two algorithms, a component carrier (CC) and resource block (RB) allocation algorithm called DABC-CCRBA and a subgradient power allocation algorithm called SPA. The former is used to dynamically allocate CC and RB for users with different carrier aggregation capacities, and the latter, which is based on the Lagrangian dual method, is used to optimize the power allocation process. Simulation results showed that the proposed JRA-WQOE algorithm has low computational complexity and fast convergence. Compared with existing algorithms, it affords obvious advantages such as improving the average throughput and fairness to users. With varying numbers of users and signal-to-noise ratios (SNRs), the proposed algorithm achieved higher average QoE values than prevalent algorithms.

Surgical Treatment of a Chordoma Arising from the Second Thoracic Vertebral Body through the Modified Anterior Approach - Case Report - (전방 접근법으로 제거한 제2흉추 척삭종 - 증 례 보 고 -)

  • Lee, Jong-Won;Kim, Young-Baeg;Park, Seung-Won;Hwang, Sung-Nam;Choi, Duck-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.4
    • /
    • pp.574-579
    • /
    • 2000
  • Chordomas are rare central nervous system tumors that are found predominantly in the sacrococcygeal(50%) and basiosphenoidal region(35%). Most of the remainder are related to the vertebral bodies and only 1 to 2% of them are known to occur in the thoracic vertebrae. A 15-year-old girl was admitted because of paraparesis. Three months prior to admission, she underwent a lumbar laminectomy at other hospital for the treatment of herniated lumbar disc but paraparesis became rather aggravated after the operation. At admission, MRI showed a low signal T1WI, high signal T2WI mass compressing the cord at T2 vertebral body. The tumor was subtotally removed via costotransversectomy but as the tumor was proven to be a chordoma, a second stage operation via anterior route was followed. At second operation, T2 corpectomy and T1-T3 plate fixation with autogeneous ileac bone graft was performed. Shortly after the operation, preoperative paraparesis disappeared completely and no evidence of tumor recurrence was noticed both clinically and radiologically for next 2 years. Spine surgery at cervicothoracic junction may be technically demanding due to anatomical complexity and hindering large vessels. The authers reviewed this case with special emphasis on the surgical procedure in this region.

  • PDF

Fast Variable-size Block Matching Algorithm for Motion Estimation Based on Bit-patterns (비트패턴 기반 움직임 추정을 위한 고속의 가변 블록 정합 알고리즘)

  • Kwon, Heak-Bong;Song, Young-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.2
    • /
    • pp.11-18
    • /
    • 2003
  • In this paper, we propose a fast variable block matching algorithm for motion estimation based on bit-patterns. Motion estimation in the proposed algorithm is peformed after the representation of image sequence is transformed 8-bit pixel values into 1-bit ones by the mean pixel value of search block, which brings a short searching time by reducing the computational complexity. Moreover, adaptive searching methods according to the motion information of the block make the procedure of motion estimation efficient by eliminating unnecessary searching processes of low motion block and deepening a searching procedure in high motion block. Experimental results show that the proposed algorithm provides bettor performance - average 0.5dB PSNR improvement and about 99% savings in the number of operations - than full search Hock matching algorithm with a fixed block size.

  • PDF

PRMS: Page Reallocation Method for SSDs (PRMS: SSDs에서의 Page 재배치 방법)

  • Lee, Dong-Hyun;Roh, Hong-Chan;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.17D no.6
    • /
    • pp.395-404
    • /
    • 2010
  • Solid-State Disks (SSDs) have been currently considered as a promising candidate to replace hard disks, due to their significantly short access time, low power consumption, and shock resistance. SSDs, however, have drawbacks such that their write throughput and life span are decreased by random-writes, nearly regardless of SSDs controller designs. Previous studies have mostly focused on better designs of SSDs controller and reducing the number of write operations to SSDs. We suggest another method that reallocates data pages that tend to be simultaneously written to contiguous blocks. Our method gathers write operations during a period of time and generates write traces. After transforming each trace to a set of transactions, our method mines frequent itemsets from the transactions and reallocates the pages of the frequent itemsets. In addition, we introduce an algorithm that reallocates the pages of the frequent itemsets with moderate time complexity. Experiments using TPC-C workload demonstrated that our method successfully reduce 6% of total logical block access.

Study on the Low-Power Carrier Recovery for Digital Satellite Broadcasting Demodulator (DSBD를 위한 저전력 반송파 복원에 관한 연구)

  • Park, Hyoung-Keun;Lee, Seung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.773-778
    • /
    • 2007
  • In order to resolve problems with the phase error in QPSK demodulator of the digital satellite broadcasting systems, the demodulator requires carrier recovery loop which searches for the frequency and phase of the carrier. In this paper the complexity of implementation is reduced by the reduction into half of the number of the multiplier in Inter structure of the conventional carrier recovery loop, and as the drawback of NCO of the conventional carrier recovery loop wastes a amount of power for the structure of lookup table, We designed the structure of combinational logic without the lookup table. In the comparison with dynamic power of the proposed NCO, the power of NCO with the lookup table is $175{\mu}W$, NCO with the proposed structure is $24.65{\mu}W$. As the result, it is recognized that about one eight of loss power is reduced. In the simulation of carrier recovery loop designed QPSK demodulator, it is known that the carrier phase is compensated.

Recognition of Physical Rehabilitation on the Upper Limb Function using 3D Trajectory Information from the Stereo Vision Sensor (스테레오비전 센서의 3D 궤적 정보를 이용한 상지 재활 동작 인식)

  • Kwon, Ki-Hyeon;Lee, Hyung-Bong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.8
    • /
    • pp.113-119
    • /
    • 2013
  • The requirement of rehabilitation is increasing from the stroke, spinal cord injury. One of the most difficult part is the upper limb rehabilitation because of its nervous complexity. A rehabilitation has effectiveness when a professional therapist treats in work at facility, but it has problems of an accessibility, a constant availability, a self-participation and taking lots of cost and time. In this paper, we test and experiment the accuracy and execution time of the pattern recognition algorithms like PCA, ICA, LDA, SVM to show the recognition possibility of it on the upper limb function from the 3D trajectory information which is gathered from stereo vision sensor(Kinect). From the result, PCA, ICA have low accuracy, but LDA, SVM have good accuracy to use for physical rehabilitation on the upper limb function.

Development of a Shooting Training System using an Accelerometer (가속도 센서를 이용한 사격 훈련 시스템 개발)

  • Joo, Hyo-Sung;Woo, Min-Jung;Woo, Ji-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.263-271
    • /
    • 2021
  • Optoelectronic shooting training systems are used in shooting training sites to improve the accuracy of shooting by tracking the trajectories of gun movements. However, optoelectronic-based systems have limitations in terms of cost, complexity of installation, and the risk that electronic targets may be broken. In this study, we developed and verified a shooting training system that measures postural tremors using a low-cost accelerometer. The acceleration sensor module was designed to be attached to the air cylinder of a gun. Postural tremors were evaluated based on amplitude, frequency, and spatial pattern index, which were computed using acceleration data. The postural tremor indices between the accelerometer and optoelectronic-based system were highly correlated (left-right and up-down directions: r = 0.76 and r = 0.70, respectively). We validated the developed shooting training system using an independent two-sample t-test, which identified a significant difference (p < 0.05) in the calculated postural tremor index according to the athlete's shooting score (i.e., best and worst shots).

Study on the Necessity and Policy Direction of Participating SMEs in Standardization Activities (중소기업의 표준화 활동 참여의 필요성과 정책방향에 관한 연구)

  • Jeong, Myoung-Sun;Kong, Hee-Jung
    • Journal of Digital Convergence
    • /
    • v.17 no.3
    • /
    • pp.47-54
    • /
    • 2019
  • The technical standard is an important factor in the national economy, and its importance is gaining more attention due to the emergence of the convergence industry. This is an essential element for implementing fusion technology because it ensures interoperability. Since standardization activities are essential for the growth of domestic SMEs, this study aims to diagnose the status of standardization activities of SMEs and to suggest policy directions accordingly. And we sought to clarify the status of the standardization activities of domestic SMEs and to draw some implications for the domestic promotion plan by examining the major promotion policies for overseas standardization successfully. As a result, it was found that the investment cost for the standard activities is burdensome, the professional manpower is needed, and the participation of SMEs is low due to the complexity of the standard technology. In addition, standardization activities have weaknesses in terms of technology protection, and SMEs tend to avoid technology disclosure. Therefore, in order to solve the difficulties of standardization of companies, it is necessary to establish cooperation system of supporting organizations. In order to promote standardization activities, it is necessary to establish legal basis necessary for technology protection.

A Study on Implementation of the High Speed Feature Extraction System Based on Block Type Classification (블록 유형 분류 알고리즘 기반 고속 특징추출 시스템 구현에 관한 연구)

  • Lee, Juseong;An, Ho-Myoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.186-191
    • /
    • 2019
  • In this paper, we propose a implementation approach of the high-speed feature extraction algorithm. The proposed method is based on the block type classification algorithm which reduces the computation time when target macro block is divided to smooth block type that has no image features. It is quantitatively identified that occurs at 29.5% of the total image using 200 standard test images with $64{\times}64$ macro block size. This means that within a standard test image containing various image information, 29.5% can reduce the complexity of the operation. When the proposed approach is applied to the Canny edge detection, the required latency of the edge detection can be completely eliminated, such as 2D derivative filter, gradient magnitude/direction computation, non-maximal suppression, adaptive threshold calculation, hysteresis thresholding. Also, it is expected that operation time of the feature detection can be reduced by applying block type classification algorithm to various feature extraction algorithms in this way.

Creating damage tolerant intersections in composite structures using tufting and 3D woven connectors

  • Clegg, Harry M.;Dell'Anno, Giuseppe;Partridge, Ivana K.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.145-156
    • /
    • 2019
  • As the industrial desire for a step change in productivity within the manufacture of composite structures increases, so does the interest in Through-Thickness Reinforcement technologies. As manufacturers look to increase the production rate, whilst reducing cost, Through-Thickness Reinforcement technologies represent valid methods to reinforce structural joints, as well as providing a potential alternative to mechanical fastening and bolting. The use of tufting promises to resolve the typically low delamination resistance, which is necessary when it comes to creating intersections within complex composite structures. Emerging methods include the use of 3D woven connectors, and orthogonally intersecting fibre packs, with the components secured by the selective insertion of microfasteners in the form of tufts. Intersections of this type are prevalent in aeronautical applications, as a typical connection to be found in aircraft wing structures, and their intersections with the composite skin and other structural elements. The common practice is to create back-to-back composite "L's", or to utilise a machined metallic connector, mechanically fastened to the remainder of the structure. 3D woven connectors and selective Through-Thickness Reinforcement promise to increase the ultimate load that the structure can bear, whilst reducing manufacturing complexity, increasing the load carrying capability and facilitating the automated production of parts of the composite structure. This paper provides an overview of the currently available methods for creating intersections within composite structures and compares them to alternatives involving the use of 3D woven connectors, and the application of selective Through-Thickness Reinforcement for enhanced damage tolerance. The use of tufts is investigated, and their effect on the load carrying ability of the structure is examined. The results of mechanical tests are presented for each of the methods described, and their failure characteristics examined.