DOI QR코드

DOI QR Code

Development of a Shooting Training System using an Accelerometer

가속도 센서를 이용한 사격 훈련 시스템 개발

  • Joo, Hyo-Sung (Department of Electrical, Electrionic and Computer Engineering, University of Ulsan) ;
  • Woo, Min-Jung (School of Sports and Exercise Science, University of Ulsan) ;
  • Woo, Ji-Hwan (Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan)
  • 주효성 (울산대학교 전기전자컴퓨터공학전공) ;
  • 우민정 (울산대학교 스포츠과학부) ;
  • 우지환 (울산대학교 전기공학부 의공학전공)
  • Received : 2021.04.15
  • Accepted : 2021.07.20
  • Published : 2021.07.28

Abstract

Optoelectronic shooting training systems are used in shooting training sites to improve the accuracy of shooting by tracking the trajectories of gun movements. However, optoelectronic-based systems have limitations in terms of cost, complexity of installation, and the risk that electronic targets may be broken. In this study, we developed and verified a shooting training system that measures postural tremors using a low-cost accelerometer. The acceleration sensor module was designed to be attached to the air cylinder of a gun. Postural tremors were evaluated based on amplitude, frequency, and spatial pattern index, which were computed using acceleration data. The postural tremor indices between the accelerometer and optoelectronic-based system were highly correlated (left-right and up-down directions: r = 0.76 and r = 0.70, respectively). We validated the developed shooting training system using an independent two-sample t-test, which identified a significant difference (p < 0.05) in the calculated postural tremor index according to the athlete's shooting score (i.e., best and worst shots).

거총부터 격발까지 총구 움직임의 궤적을 추적하여, 사격의 정확성을 향상시킬 목적으로 광전자 기반 사격 훈련 시스템이 사격 훈련 현장에서 활용되어 왔다. 광전자 기반 시스템은 설치가 복잡하고, 표적의 파손 위험이 존재하며, 고가의 장비로 선수들의 접근성이 떨어진다는 단점이 있다. 이에 본 연구는 저비용의 가속도 센서 모듈을 이용하여 체위 떨림을 측정하고 피드백할 수 있는 사격 훈련 시스템을 개발하고, 이의 활용성을 검증하였다. 가속도 센서 모듈은 총기의 에어 실린더에 부착할 수 있도록 제작되었다. 체위 떨림은 가속도 센서 데이터를 이용하여 진폭, 주파수, 공간적 패턴 지표로서 분석되었다. 가속도 센서와 기존의 광전자 기반 시스템에서 측정된 사격시 체위 떨림 진폭 지표 간에는 높은 상관관계(좌우 방향: r=0.76; 상하 방향: r=0.70)가 나타났다. 또한, 사격 선수를 대상으로 진행한 시스템의 유효성 평가에서는 선수의 사격 점수(최상, 최하 격발)에 따라 계산된 체위 떨림 지표가 유의한 차이(p<0.05)가 있음을 독립 표본 t-검증을 이용하여 검증하였다.

Keywords

Acknowledgement

This research project was supported by the Sports Promotion Fund of Seoul Olympic Sports Promotion Foundation from Ministry of Culture, Sports and Tourism

References

  1. Y. G. Ko. (2011). The effect of visual information on postural sway during pistol aiming. Korean Journal of Sport Psychology, 22(3), 1-9.
  2. M. Lakie. (2011). The influence of muscle tremor on shooting performance. Experimental Physiology, 95(3), 441-450. DOI: 10.1113/expphysiol.2009.047555
  3. K. J. Kelleran, S. Morrison & D. M. Russel. (2016). Three-dimensional assessment of postural tremor during goal-directed aiming. Experimental Brain Research, 234, 3399-3409. DOI: 10.1007/s00221-016-4738-x
  4. K. Mononen, J. T. Vitasalo, P. Era & N. Konttinen. (2003). Optoelectronic measures in the analysis of running target shooting. Scandinavian Journal of Medicine & Science in Sports, 13(3), 200-207. DOI: 10.1034/j.1600-0838.2003.00130.x.
  5. K. Mononen, N. Konttinen, J. Vitasalo & P. Era. (2007). Relationships between postural balances, rifle stability and shooting accuracy among novice rifle shooters. Scandinavian Journal of Medicine & Science in Sports, 17, 180-185. DOI: 10.1111/j.1600-0838.2006.00549.x
  6. G. Sattlecker, M. Buchecker, E. Muuller & S. J. Lindinger. (2014). Postural balance and rifle stability during standing shooting on an indoor gun range without physical stress in different groups of biathletes. International Journal of Sports Science & Coaching, 9(1), 171-184. DOI: 10.1260/1747-9541.9.1.171
  7. S. Ihalainen, V. Linnamo, K. Mononen & S. Kuitunen. (2016). Relation of elite rifle shooters' technique-test measures to competition performance. International Journal of Sports Physiology & Performance, 11(5), 671-677. DOI: 10.1123/ijspp.2015-0211
  8. S. Ihalainen, S. Kuitunen, K. Mononen & V. Linnamo. (2016). Determinants of elite-level air rifle shooting performance. Scandinavian Journal of Medicine & Science in Sports, 26, 266-274. DOI: 10.1111/sms.12440
  9. S. Ihalainen, K. Mononem, V. Linnamo & S. Kuitunen. (2018). Which technical factors explain competition performance in air rifle shooting? International Journal of Sports Science & Coaching, 13(1), 78-85. DOI: 10.1177/1747954117707481
  10. J. Ko, D. Han & K. M. Newell. (2018). Skill level changes the coordination and variability of standing posture and movement in a pistol-aiming task. Journal of Sports Sciences, 36(7), 809-816. DOI: 10.1080/02640414.2017.1343490
  11. E. Olsson & M. S. Laaksonen. (2021). Key technical components for air pistol shooting performance. International Journal of Performance Analysis in Sport, 1-13. DOI: 10.1080/24748668.2021.1891820
  12. J. Stuart & J. Atha. (1990). Postural consistency in skilled archers. Journal of Sports Sciences, 8(3), 223-234. DOI: 10.1080/24748668.2021.1891820
  13. P. A. Hsu & B. C. Cooley. (2003). Effect of exercise on microsurgical hand tremor. Microsurgery, 23, 323-327. DOI: 10.1002/micr.10156
  14. P. H. Mansur et al. (2007). A review on techniques for tremor recording and quantification. Critical Reviews in Biomedical Engineering, 35(5), 343-362. DOI: 10.1615/critrevbiomedeng.v35.i5.10
  15. B. Pellegrini, L. Fares, G. Nollo & F. Schena. (2004). Quantifying the contribution of arm postural tremor to the outcome of goal-directed pointing task by displacement measures. Journal of Neuroscience Methods, 139(2), 185-193. DOI: 10.1016/j.jneumeth.2004.04.025
  16. B. Carignan, J. F. Daneault & C. Duval. (2012). The organization of upper limb physiological tremor. European Journal of Applied Physiology, 112(4), 1264-1284. DOI: 10.1007/s00421-011-2080-3
  17. W. T. Tang, W. Y. Zhang, C. Huang, M. S. Young & I. S. Hwang. (2008). Postural tremor and control of the upper limb in air pistol shooters. Journal of Sports Sciences, 26(14), 1579-1587. DOI: 10.1080/02640410802287063
  18. A. Dovzhenok & L. Rubchinsky. (2012). On the origin of tremor in parkinson's disease. PLOS ONE, 7(7), e41598 DOI: 10.1371/journal.pone.0041598
  19. F. Vial, P. Kassavetis, S. Merchant, D. Haubenberger & M. Hallett. (2019). How to do an electrophysiological study of tremor. Clinical Neurophysiology Practice, 28(4), 134-142. DOI: 10.1016/j.cnp.2019.06.002
  20. J. T. Vitasalo, P. Era, N. Konttinen, H. Mononen, K. Mononen & K. Norvapalo. (2001). Effects of 12-week shooting training and mode of feedback on shooting scores among novice shooters. Scandinavian Journal of Medicine & Science in Sports, 11(6), 362-368. DOI: 10.1034/j.1600-0838.2001.110608.x
  21. I. Zanevskyy, Y. Korostylova & V. Mykhaylov. (2009). Specificity of shooting training with the optoelectronic target. Acta of Bioengineering and Biomechanics, 11(4), 63-70. DOI: 10.1177/1754337114536554
  22. I. Zanevskyy, Y. Korostylova & V. Mykhaylov. (2014). Accuracy of SCATT optoelectronic shooting system.. Proceedings of the Institution of Mechanical Engineers, 228(4), 270-275. DOI: 10.1177/1754337114536554
  23. I. Zanevskyy, Y. Korostylova & V. Mykhaylov. (2014). Shot moment in optoelectronic training in the air-pistol shooting. International Journal of Sports Science and Engineering, 4(2), 67-78. https://doi.org/10.5923/j.sports.20140402.05
  24. I. Zanevskyy, Y. Korostylova & V. Mykhaylov. (2010). Aiming point trajectory as an assessment parameter of shooting performance. Human Movement, 13(3), 211-217. DOI: 10.2478/v10038-012-0024-3
  25. M. Ferdjallah, G. F. Harris & J. J. Wertsch. (1999). Instantaneous postural stability characterization using time-frequency analysis. Gait & Posture, 10(2), 129-134. DOI: 10.1016/s0966-6362(99)00023-5
  26. W. Bezdek. (1999). Pattern recognition with fuzzy objective function algorithm. New York : Plenum.
  27. W. Joo & F. C. Rhee. (2017). Determining the fuzzifier values for interval type-2 possibilistic Fuzzy c-means clustering. Journal of Korean Institute of Intelligent Systems, 27(2), 99-105. https://doi.org/10.5391/JKIIS.2017.27.2.099
  28. H. Joo & J. Woo. (2020). Development of a squat angle measurement system using an inertial sensor. Journal of the Korea Convergence Society, 11(10), 355-361. https://doi.org/10.15207/JKCS.2020.11.10.355
  29. J. Cho. (2020). Human activity recognition using sensor fusion and kernel discriminant analysis on smartphones. Journal of the Korea Convergence Society, 11(5), 9-17. https://doi.org/10.15207/JKCS.2020.11.5.009
  30. M. S. Laaksonen, T. Finkenzeller, H. Holmberg & G. Sattlecker. (2018). The influence of physiobiomechanical parameters, technical aspects of shooting, and psychophysiological factors on biathlon performance: A review. Journal of Sport and Health Science, 7(4), 394-404. DOI: 10.1016/j.jshs.2018.09.003.
  31. P. Era, N. Konttinen, P. Mehto, P. Saarela & H. Lyytinen. (1996). Postural stability and skilled performance-a study on top-level and naive rifle shooters. Journal of Biomechanics, 29(3), 301-306. DOI: 10.1016/0021-9290(95)00066-6
  32. A. Baca & P. Kornfeind. (2021). Stability analysis of motion patterns in biathlon shooting. Human Movement Science, 31(2), 295-302. DOI: 10.1016/j.humov.2010.05.008
  33. J. Guo, L. Yang, A. Umek & R. Tomazic. (2020). A Random forest-based accuracy prediction model for augmented biofeedback in a precision shooting training system. Sensors, 20, 4512. DOI: 10.3390/s20164512