• Title/Summary/Keyword: low water depth

Search Result 678, Processing Time 0.025 seconds

문경지역 탄산온천수의 지구화학적 및 동위원소적 특성연구

  • 배대석;최현수;고용권;박맹언;정율필
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.87-90
    • /
    • 2000
  • The hydrogeochemical and isotopic studies on deep groundwater in the Munkyeong area, Kyeongbuk province were carried out. $CO_2$-rich groundwater (Ca-HC $O_3$ type) is characterized by low pH (5.8~6.5) and high TDS (up to 2,682 mg/L), while alkali groundwater (Na-HC $O_3$ type) shows a high pH (9.I~10.4) and relatively low TBS (72~116 mg/L). $CO_2$-rich water may have evolved by $CO_2$ added at depth during groundwater circulation. This process leads to the dissolution of surrounding rocks and Ca, Na, Mg, K and HC $O_3$ concentrations are enriched. The low Pc $o_2$ (10$^{-6.4}$atm) of alkali groundwaters seems to result from the dissolution of silicate minerals without a supply of $CO_2$. The $\delta$$^{18}$ O and $\delta$D values and tritium data indicate that two types of deep groundwater were both derived from pre-thermonuclear meteoric water. The carbon Isotope data show that dissolved carbon in the $CO_2$-rich water was possibly derived from deep-seated $CO_2$ gas. The $\delta$$^{18}$ S values of dissolved sulfate show that sulfate reduction occurred at great depths. The application of various chemical geothermometers on $CO_2$-rich groundwater shows that the calculated deep reservoir temperature is about 130~175$^{\circ}C$. Based on the geological setting, water chemistry and environmental isotope data, each of the two types of deep groundwater represent distinct hydrologic and hydrogeochemical evolution at depth and their movement is controlled by the local fracture system.m.

  • PDF

Paleo-Tsushima Water influx to the East Sea during the lowest sea level of the late Quaternary

  • Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.714-724
    • /
    • 2005
  • The East Sea, a semi-enclosed marginal sea with shallow straits in the northwest Pacific, is marked by the nearly geographic isolation and the low sea surface salinity during the last glacial maximum (LGM). The East Sea might have the only connection to the open ocean through the Korea Strait with a sill depth of 130 m, allowing the paleo-Tsushima Water to enter the sea during the LGM. The low paleosalinity associated with abnormally light $\delta^{18}O$ values of planktonic foraminifera is interpreted to have resulted from river discharge and precipitation. Nevertheless, two LGM features in the East Sea are disputable. This study attempts to estimate volume transport of the paleo-Tsushima Water via the Korea Strait and further examines its effect on the low sea surface salinity (SSS) during the lowest sea level of the LGM. The East Sea was not completely isolated, but partially linked to the northern East China Sea through the Korea Strait during the LGM. The volume transport of the paleo-Tsushima Water during the LGM is calculated approximately$(0.5\~2.1)\times10^{12}m^3/yr$ on the basis of the selected seismic reflection profiles along with bathymetry and current data. The annual influx of the paleo-Tsushima Water is low, compared to the 100 m-thick surface water volume $(about\;79.75\times10^{12}m^3)$ in the East Sea. The paleo-Tsushima Water influx might have changed the surface water properties within a geologically short time, potentially decreasing sea surface salinity. However, the effect of volume transport on the low sea surface salinity essentially depends on freshwater amounts within the paleo-Tsushima Water and excessive evaporation during the glacial lowstands of sea level. Even though the paleo-Tsushima Water is assumed to have been entirely freshwater at that time period, it would annually reduce only about 1‰ of salinity in the surface water of the East Sea. Thus, the paleo-Tsushima Water influx itself might not be large enough to significantly reduce the paleosalinity of about 100 m-thick surface layer during the LGM. This further suggests contribution of additional river discharges from nearby fluvial systems (e.g. the Amur River) to freshen the surface water.

Physical habitat characteristics of freshwater crayfish Cambaroides similis (Koelbel, 1892) (Arthropoda, Decapoda) in South Korea

  • Jin-Young Kim;Yong Ju Kwon;Ye Ji Kim;Yeong-Deok Han;Jung Soo Han;Chae Hui An;Yong Su Park;Dongsoo Kong
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.200-210
    • /
    • 2023
  • Background: Cambaroides similis is an endangered candidate species living in the stream of South Korea. Freshwater crayfish is known to decline rapidly not only domestically, but also internationally. Its decline is projected to be further exacerbated due to climate change. Understanding physical characteristics of the habitat is crucial for the conservation of an organism. However, comprehensive data regarding the distribution and physical habitat characteristics of C. similis are currently unavailable in South Korea. Thus, the objective of this study was to ascertain preferred ranges for water depth, current velocity, and streambed substrate of C. similis using Weibull model. Results: In this study, C. similis was found at 59 sites across 12 regions in South Korea. Its optimal water depth preferences ranged from 11.9 cm to 30.1 cm. Its current velocity preferences ranged from 9.8 cm s-1 to 29.1 cm s-1. Its substrate preferences ranged from -5.1 𝜱m to -2.5 𝜱m. Median values of central tendency were determined as follows: water depth of 21.4 cm, current velocity of 21.2 cm s-1, and substrate of -4.1 𝜱m. Mean values of central tendency were determined as follows: water depth of 21.8 cm, current velocity of 22.0 cm s-1, and substrate of -4.4 𝜱m. Mode values of central tendency were determined as follows: water depth of 21.7 cm, current velocity of 20.1 cm s-1, and substrate of -3.7 𝜱m. Conclusions: Based on habitat suitability analysis, physical microhabitat characteristics of C. similis within a stream were identified as Run section with coarse particle substrate, low water depth, and slow current velocity. Due to high sensitivity of these habitats to environmental changes, prioritized selection and assessment of threats should be carried out as a primary step.

Natural Organic Matter Removal and Fouling Control in Low-Pressure Membrane Filtration for Water Treatment

  • Cui, Xiaojun;Choo, Kwang-Ho
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Natural organic matter (NOM) is a primary component of fouling in low-pressure membrane filtration, either solely, or in concert with colloidal particles. Various preventive measures to interfere with NOM fouling have been developed and extensively tested, such as coagulation, oxidation, ion exchange, carbon adsorption, and mineral oxide adsorption. Therefore, this article aims to conduct a literature review covering the topics of low-pressure membrane processes, NOM characteristics and fouling behaviors, and diverse fouling control strategies. In-depth explanations and discussion are made regarding why some treatment options are able to remove NOM from source water, but do not reduce fouling. This review provides insight for hybridized membrane processes with respect to NOM removal and fouling mitigation in water treatment.

Effects of water levels and soil nutrients on the growth of Iris laevigata seedlings

  • Lee, Eun Hye;Lee, Bo Eun;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • Iris laevigata is geographically restricted and legally protected in Korea. In this study, a mesocosm study was conducted to examine the effects of environmental conditions such as water levels and soil nutrient conditions on the growth and survival of I. laevigata seedlings. Complete submergence lowered the total number of leaves, biomass, and survival rates. A rise in soil nutrients increased overall seedling growth and increased tiller numbers via the promotion of asexual reproduction. Also, we found that the lowest measured values of seedlings are associated with the most stressful condition due to the interaction of low soil nutrients and high water levels. I. laevigata seedlings, however, are distributed in low-nutrient habitats such as floating mat, even though they do not grow well under these conditions. This study suggests that I. laevigata does not prefer low-nutrient condition but choose another benefit such as low competition. Also, the water level must be lower than the seedling height for effective growth and management of I. laevigata.

Experimental Study on a Low-Temperature Hot Water Capillary Radiant Floor Heating System (저온온수 모세유관 바닥복사 난방시스템의 성능에 관한 실험적 연구)

  • Cho, Jinkyun;Park, Beungyong;Lee, Yongjun;Chong, Wonho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.2
    • /
    • pp.68-82
    • /
    • 2018
  • Radiant floor heating systems with capillary tubes are energy saving systems in which hot water is circulated into capillary tube with a small diameter. In this study, the heating performance of capillary tube system is investigated in an experimental study and a simulation model. The results of the study showed that, the capillary tube radiant floor heating system maintains a more stable floor surface temperature in comparison a PB pipe system. In terms of energy consumption, the capillary tube radiant floor heating system proved to be more efficient than the PB pipe heating system at $40^{\circ}C$ of low temperature hot water supply. The difference between water temperature and room temperature can be held low for heating which saves energy. Low temperature radiant floor heating system with capillary tubes have significant advantages such as health improvement, low energy cost, optimum use of heat source(boiler) and higher operational efficiency.

Effects of Depth-varying Compressional Wave Attenuation on Sound Propagation on a Sandy Bottom in Shallow Water (천해 사질 퇴적층에서 종파감쇠계수의 깊이별 변화가 음파손실에 미치는 영향)

  • Na, Young-Nam;Shim, Tae-Bo;Jurng, Moon-Sub;Choi, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.76-82
    • /
    • 1994
  • The characteristics of bottom sediment may be able to vary within a few meters of depth in shallow water. Since bottom attenuation coefficient as well as sound velocity in the bottom layer is determined by the composition and characteristics of sediment itself, it is reasonable to assume that the bottom attenuation coefficient is accordingly variable with depth. In this study, we use a parabolic equation scheme to examine the effects of depth-varying compressional wave attenuation on acoustic wave propagation in the low frequency ranging from 100 to 805 Hz. The sea floor under consideration is sandy bottom where the water and the sediment depths are 40 meters and 10 meters, respectively. Depending on the assumption that attenuation coefficient is constant or depth-varying, the propagation loss difference is as large as 10dB within 15 km. The predicted propagation loss is very much comparable to the measured one when we employ a depth-varying attenuation coefficient.

  • PDF

Determination of Normal Saturated- and Polycyclic Aromatic Hydrocarbons in the River Water of Bangladesh by Liquid-Liquid Extraction and Gas Chromatography

  • Mottaleb, M.A.;Sarma, D.K.;Sultana, S.;Husain, M.M.;Alam, S.M.M.;Salehuddin, S.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.99-105
    • /
    • 2003
  • A liquid-liquid extraction followed by evaporative concentration method was used to determine the concentration of normal, or straight chain, saturated hydrocarbons (NSH) $(C_{10}\;to\;C_{24})$ and polycyclic aromatic hydrocarbons (PAH) here defined as: fluorene, anthracene, pyrene, chrysene and perylene, in the Buriganga River water of Bangladesh. Samples were collected from 5 and 25 cm depth of water at the southern, middle and northern parts of the river at Postogolla, Sadarghat and Sowarighat stations. Hydrocarbons were extracted from 450 mL of water into 75 mL n-hexane and then concentrated into 1 or 2 mL solution by evaporation. These solutions were analyzed by gas chromatography. The highest and lowest concentrations were determined as $257\;{\mu}gL^{-1}\;for\;C_{13}\;and \;0.24\;{\mu}g\;L^{-1}\;for\;C_{22}$ at 5 ㎝ depth of water, at the northern part of the Sowarighat and southern part of the Postogolla, respectively. This method could allow the analysis of water for $C_{22}$ as low as $0.24\;{\mu}g\;L^{-1}$.

Estimation of Suitable Flow Needs for Maintaining Fish Habitat Conditions Using Water Quantity and Quality Simulation (수량.수질 모의치를 이용한 어류 서식 조건 유지에 필요한 적정 유량 산정)

  • Kim, Gyu-Ho;Jo, Won-Cheol;Jeon, Byeong-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.3-14
    • /
    • 2000
  • The primary objective of this study is to estimate the suitable flow in need for conservation and restoration of the fish habitat in running water ecosystem, which has very important status in the instream flow for stream environment. Year, monthly low flows are estimated to properly maintain the fish habitat. Water depth and velocity are simulated, and also water temperature and Dissolved Oxygen(DO) are predicted at gradually varied flow using estimated low flows. These simulated conditions for each low flow are graphically compared with the requirements to maintain fish habitat at each life stage. These processes were applied to 3 riffle transects located at Dalcheon(Dal stream) in the South Han river. Pirami (Zacco platypus) was selected as a representative fish species in Dalcheon. It was shown that the suitable flow for maintaining the representative fish habitat at each life stage depends on hydraulic conditions rather than water quality conditions, and the flow ranges from the 10-year minimum low flow to consecutive 7-day 2.33-year low flow.w flow.

  • PDF

Effect of Temperature and Plow Pan on Water Movement in Monolithic Weighable Lysimeter with Paddy Sandy Loam Soil during Winter Season

  • Seo, Mijin;Han, Kyunghwa;Jung, Kangho;Cho, Heerae;Zhang, Yongseon;Choi, Seyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.300-309
    • /
    • 2016
  • The monolithic weighing lysimeter is a useful facility that could directly measure water movement via layers, drainage, and evapotranspiration (ET) with precise sensors. We evaluated water movement through layers and water balance using the lysimeter with undisturbed paddy sandy loam soil, Gangseo soil series (mesic family of Anthraquic Eutrudepts classified by Soil Taxonomy) during winter season from Dec. 2014 to Feb. 2015. Daily ET indicated up to 1.5 mm in December and January and 2 mm in February. The abrupt increase of soil water tension at the depth of 0.1 m, when soil temperature at the same depth was below $2^{\circ}C$, was observed due to temporary frost heaving. The surface evaporation was less than reference ET below -15 kPa of soil water potential at the depth of 0.1 m. The maximum drainage rate was similar to the saturated hydraulic conductivity of a plow pan layer. Both upward and downward water movement, related to ET and drainage, were retarded by a plow pan layer. This study demonstrated that the lysimeter study could well quantify water balance components even under frost heaving during winter season and that a plow pan with low permeability could act as a boundary that affects drainage and evapotranspiration.