References
- Huang H, Schwab K, Jacangelo JG. Pretreatment for low pressure membranes in water treatment: a review. Environ. Sci. Technol. 2009;43:3011-3019. https://doi.org/10.1021/es802473r
- Yuan W, Zydney AL. Effects of solution environment on humic acid fouling during microfiltration. Desalination 1999;122:63-76. https://doi.org/10.1016/S0011-9164(99)00028-4
- Choo KH, Kang SK. Removal of residual organic matter from secondary effluent by iron oxides adsorption. Desalination 2003;154:139-146. https://doi.org/10.1016/S0011-9164(03)80014-0
- Lee KW, Choo KH, Choi SJ, Yamamoto K. Development of an integrated iron oxide adsorption/membrane separation system for water treatment. Water Sci. Technol. Water Supply 2002;2:293-300.
- Ha TW, Choo KH, Choi SJ. Effect of chlorine on adsorption/ ultrafiltration treatment for removing natural organic matter in drinking water. J. Colloid Interface Sci. 2004;274:587-593. https://doi.org/10.1016/j.jcis.2004.03.010
- Choo KH, Tao R, Kim MJ. Use of a photocatalytic membrane reactor for the removal of natural organic matter in water: effect of photoinduced desorption and ferrihydrite adsorption. J. Membr. Sci. 2008;322:368-374. https://doi.org/10.1016/j.memsci.2008.05.069
- Yao P, Choo KH, Kim MH. A hybridized photocatalysismicrofiltration system with iron oxide-coated membranes for the removal of natural organic matter in water treatment: effects of iron oxide layers and colloids. Water Res. 2009;43:4238-4248. https://doi.org/10.1016/j.watres.2009.06.010
- Chang YJ, Choo KH, Benjamin MM, Reiber S. Combined adsorption-UF process increases TOC removal. J. Am. Water Works Assoc. 1998;90:90-102.
- Zhang M, Li C, Benjamin MM, Chang Y. Fouling and natural organic matter removal in adsorbent/membrane systems for drinking water treatment. Environ. Sci. Technol. 2003;37:1663-1669. https://doi.org/10.1021/es0260418
- Kim J, Cai Z, Benjamin MM. Effects of adsorbents on membrane fouling by natural organic matter. J. Membr. Sci. 2008;310:356-364. https://doi.org/10.1016/j.memsci.2007.11.007
- Cai Z, Kim J, Benjamin MM. NOM removal by adsorption and membrane filtration using heated aluminum oxide particles. Environ. Sci. Technol. 2008;42:619-623. https://doi.org/10.1021/es7021285
- Kim J, Cai Z, Benjamin MM. NOM fouling mechanisms in a hybrid adsorption/membrane system. J. Membr. Sci. 2010;349:35-43. https://doi.org/10.1016/j.memsci.2009.11.017
- Chi FH, Amy GL. Kinetic study on the sorption of dissolved natural organic matter onto different aquifer materials: the effects of hydrophobicity and functional groups. J. Colloid Interface Sci. 2004;274:380-391. https://doi.org/10.1016/j.jcis.2003.12.049
- Kitis M, Kaplan SS, Karakaya E, Yigit NO, Civelekoglu G. Adsorption of natural organic matter from waters by iron coated pumice. Chemosphere 2007;66:130-138. https://doi.org/10.1016/j.chemosphere.2006.05.002
- Kitis M, Kaplan SS. Advanced oxidation of natural organic matter using hydrogen peroxide and iron-coated pumice particles. Chemosphere 2007;68:1846-1853. https://doi.org/10.1016/j.chemosphere.2007.03.027
- Ding C, Yang X, Liu W, Chang Y, Shang C. Removal of natural organic matter using surfactant-modified iron oxide-coated sand. J. Hazard. Mater. 2010;174:567-572. https://doi.org/10.1016/j.jhazmat.2009.09.089
- Foppen JW, Liem Y, Schijven J. Effect of humic acid on the attachment of Escherichia coli in columns of goethite-coated sand. Water Res. 2008;42:211-219. https://doi.org/10.1016/j.watres.2007.06.064
- Benjamin MM, Sletten RS, Bailey RP, Bennett T. Sorption and filtration of metals using iron-oxide-coated sand. Water Res. 1996;30:2609-2620. https://doi.org/10.1016/S0043-1354(96)00161-3
- Lai CH, Chen CY. Removal of metal ions and humic acid from water by iron-coated filter media. Chemosphere 2001;44:1177-1184. https://doi.org/10.1016/S0045-6535(00)00307-6
- Lee EK, Chen V, Fane AG. Natural organic matter (NOM) fouling in low pressure membrane filtration: effect of membranes and operation modes. Desalination 2008;218:257-270. https://doi.org/10.1016/j.desal.2007.02.021
- Lee N, Amy G, Croue JP, Buisson H. Identification and understanding of fouling in low-pressure membrane (MF/ UF) filtration by natural organic matter (NOM). Water Res. 2004;38:4511-4523. https://doi.org/10.1016/j.watres.2004.08.013
- Lee N, Amy G, Croue JP. Low-pressure membrane (MF/UF) fouling associated with allochthonous versus autochthonous natural organic matter. Water Res. 2006;40:2357-2368. https://doi.org/10.1016/j.watres.2006.04.023
- Lee N, Amy G, Croue JP, Buisson H. Morphological analyses of natural organic matter (NOM) fouling of low-pressure membranes (MF/UF). J. Membr. Sci. 2005;261:7-16. https://doi.org/10.1016/j.memsci.2005.02.039
- Lee SJ, Choo KH, Lee CH. Conjunctive use of ultrafiltration with powdered activated carbon adsorption for removal of synthetic and natural organic matter. J. Ind. Eng. Chem. 2000; 6:357-364.
- Huang H, Lee N, Young T, Gary A, Lozier JC, Jacangelo JG. Natural organic matter fouling of low-pressure, hollow-fiber membranes: effects of NOM source and hydrodynamic conditions. Water Res. 2007;41:3823-3832 https://doi.org/10.1016/j.watres.2007.05.036
- Lee SA, Choo KH, Lee CH, et al. Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment. Ind. Eng. Chem. Res. 2001;40:1712-1719. https://doi.org/10.1021/ie000738p
- Qu F, Liang H, Zhou J, et al. Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from Microcystis aeruginosa: effects of membrane pore size and surface hydrophobicity. J. Membr. Sci. 2014;449:58-66. https://doi.org/10.1016/j.memsci.2013.07.070
- Katsoufidou K, Yiantsios SG, Karabelas AJ. A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: experiments and modeling. J. Membr. Sci. 2005;266:40-50. https://doi.org/10.1016/j.memsci.2005.05.009
- Katsoufidou K, Yiantsios SG, Karabelas AJ. An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination 2008;220:214-227. https://doi.org/10.1016/j.desal.2007.02.038
- Wray HE, Andrews RC, Berube PR. Surface shear stress and retention of emerging contaminants during ultrafiltration for drinking water treatment. Sep. Purif. Technol. 2014;122:183-191. https://doi.org/10.1016/j.seppur.2013.11.003
- Wray HE, Andrews RC, Berube PR. Surface shear stress and membrane fouling when considering natural water matrices. Desalination 2013;330:22-27. https://doi.org/10.1016/j.desal.2013.09.018
- Akhondi E, Wicaksana F, Fane AG. Evaluation of fouling deposition, fouling reversibility and energy consumption of submerged hollow fiber membrane systems with periodic backwash. J. Membr. Sci. 2014;452:319-331. https://doi.org/10.1016/j.memsci.2013.10.031
- Kimura K, Hane Y, Watanabe Y, Amy G, Ohkuma N. Irreversible membrane fouling during ultrafiltration of surface water. Water Res. 2004;38:3431-3441. https://doi.org/10.1016/j.watres.2004.05.007
- Fan L, Harris JL, Roddick FA, Booker NA. Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Res. 2001;35:4455-4463. https://doi.org/10.1016/S0043-1354(01)00183-X
- Zularisam AW, Ismail AF, Salim MR, Sakinah M, Ozaki H. The effects of natural organic matter (NOM) fractions on fouling characteristics and flux recovery of ultrafiltration membranes. Desalination 2007;212:191-208. https://doi.org/10.1016/j.desal.2006.10.010
- Senesi N. Nature of interactions between organic chemicals and dissolved humic substances and the influence of environmental factors. In: Beck AJ, Jones KC, Hayes MH, eds. Organic substances in soil and water: natural constituents and their influence on contaminant behavior. Cambridge: Royal Society of Chemistry; 1993. p. 73-101.
- Huang G, Meng F, Zheng X, et al. Biodegradation behavior of natural organic matter (NOM) in a biological aerated filter (BAF) as a pretreatment for ultrafiltration (UF) of river water. Appl. Microbiol. Biotechnol. 2011;90:1795-1803. https://doi.org/10.1007/s00253-011-3251-1
- Kim HC, Yu MJ. Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control. Water Res. 2005;39:4779-4789. https://doi.org/10.1016/j.watres.2005.09.021
- Taniguchi M, Kilduff JE, Belfort G. Modes of natural organic matter fouling during ultrafiltration. Environ. Sci. Technol. 2003;37:1676-1683. https://doi.org/10.1021/es020555p
- Jermann D, Pronk W, Meylan S, Boller M. Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production. Water Res. 2007;41:1713-1722. https://doi.org/10.1016/j.watres.2006.12.030
- Jermann D, Pronk W, Kagi R, Halbeisen M, Boller M. Influence of interactions between NOM and particles on UF fouling mechanisms. Water Res. 2008;42:3870-3878. https://doi.org/10.1016/j.watres.2008.05.013
- Jermann D, Pronk W, Boller M. Mutual influences between natural organic matter and inorganic particles and their combined effect on ultrafiltration membrane fouling. Environ. Sci. Technol. 2008;42:9129-9136. https://doi.org/10.1021/es800654p
- Howe KJ, Clark MM. Fouling of microfiltration and ultrafiltration membranes by natural waters. Environ. Sci. Technol. 2002;36:3571-3576. https://doi.org/10.1021/es025587r
- Yuan W, Zydney AL. Humic acid fouling during ultrafiltration. Environ. Sci. Technol. 2000;34:5043-5050. https://doi.org/10.1021/es0012366
- Yu CH, Wu CH, Lin CH, Hsiao CH, Lin CF. Hydrophobicity and molecular weight of humic substances on ultrafiltration fouling and resistance. Sep. Purif. Technol. 2008;64:206-212. https://doi.org/10.1016/j.seppur.2008.10.008
- Zularisam AW, Ahmad A, Sakinah M, Ismail AF, Matsuura T. Role of natural organic matter (NOM), colloidal particles, and solution chemistry on ultrafiltration performance. Sep. Purif. Technol. 2011;78:189-200. https://doi.org/10.1016/j.seppur.2011.02.001
- Yuan W, Zydney AL. Humic acid fouling during microfiltration. J. Membr. Sci. 1999;157:1-12. https://doi.org/10.1016/S0376-7388(98)00329-9
- Yuan W, Kocic A, Zydney AL. Analysis of humic acid fouling during microfiltration using a pore blockage-cake filtration model. J. Membr. Sci. 2002;198:51-62. https://doi.org/10.1016/S0376-7388(01)00622-6
- Costa AR, de Pinho MN, Elimelech M. Mechanisms of colloidal natural organic matter fouling in ultrafiltration. J. Membr. Sci. 2006;281:716-725. https://doi.org/10.1016/j.memsci.2006.04.044
- Kim J, Shi W, Yuan Y, Benjamin MM. A serial filtration investigation of membrane fouling by natural organic matter. J. Membr. Sci. 2007;294:115-126. https://doi.org/10.1016/j.memsci.2007.02.020
- Yamamura H, Chae S, Kimura K, Watanabe Y. Transition in fouling mechanism in microfiltration of a surface water. Water Res. 2007;41:3812-3822. https://doi.org/10.1016/j.watres.2007.05.060
- Yamamura H, Kimura K, Watanabe Y. Mechanism involved in the evolution of physically irreversible fouling in microfiltration and ultrafiltration membranes used for drinking water treatment. Environ. Sci. Technol. 2007;41:6789-6794. https://doi.org/10.1021/es0629054
- Haberkamp J, Ruhl AS, Ernst M, Jekel M. Impact of coagulation and adsorption on DOC fractions of secondary effluent and resulting fouling behaviour in ultrafiltration. Water Res. 2007;41:3794-3802. https://doi.org/10.1016/j.watres.2007.05.029
- Guigui C, Rouch JC, Durand-Bourlier L, Bonnelye V, Aptel P. Impact of coagulation conditions on the in-line coagulation/ UF process for drinking water production. Desalination 2002;147:95-100. https://doi.org/10.1016/S0011-9164(02)00582-9
- Park P, Lee C, Choi SJ, Choo KH, Kim SH, Yoon CH. Effect of the removal of DOMs on the performance of a coagulation- UF membrane system for drinking water production. Desalination 2002;145:237-245. https://doi.org/10.1016/S0011-9164(02)00418-6
- Tran T, Gray S, Naughton R, Bolto B. Polysilicato-iron for improved NOM removal and membrane performance. J. Membr. Sci. 2006;280:560-571. https://doi.org/10.1016/j.memsci.2006.02.013
- Wang J, Wang XC. Ultrafiltration with in-line coagulation for the removal of natural humic acid and membrane fouling mechanism. J. Environ. Sci. (China) 2006;18:880-884. https://doi.org/10.1016/S1001-0742(06)60008-9
- Barbot E, Moustier S, Bottero JY, Moulin P. Coagulation and ultrafiltration: understanding of the key parameters of the hybrid process. J. Membr. Sci. 2008;325:520-527. https://doi.org/10.1016/j.memsci.2008.07.054
- Lee BB, Choo KH, Chang D, Choi SJ. Optimizing the coagulant dose to control membrane fouling in combined coagulation/ ultrafiltration systems for textile wastewater reclamation. Chem. Eng. J. 2009;155:101-107. https://doi.org/10.1016/j.cej.2009.07.014
- Maartens A, Swart P, Jacobs EP. Feed-water pretreatment: methods to reduce membrane fouling by natural organic matter. J. Membr. Sci. 1999;163:51-62. https://doi.org/10.1016/S0376-7388(99)00155-6
- Carroll T, King S, Gray SR, Bolto BA, Booker NA. The fouling of microfiltration membranes by NOM after coagulation treatment. Water Res. 2000;34:2861-2868. https://doi.org/10.1016/S0043-1354(00)00051-8
- Kabsch-Korbutowicz M. Application of ultrafiltration integrated with coagulation for improved NOM removal. Desalination 2005;174:13-22. https://doi.org/10.1016/j.desal.2004.08.037
- Kimura K, Maeda T, Yamamura H, Watanabe Y. Irreversible membrane fouling in microfiltration membranes filtering coagulated surface water. J. Membr. Sci. 2008;320:356-362. https://doi.org/10.1016/j.memsci.2008.04.018
- Song Y, Dong B, Gao N, Xia S. Huangpu River water treatment by microfiltration with ozone pretreatment. Desalination 2010;250:71-75. https://doi.org/10.1016/j.desal.2009.06.047
- Wang X, Wang L, Liu Y, Duan W. Ozonation pretreatment for ultrafiltration of the secondary effluent. J. Membr. Sci. 2007;287:187-191. https://doi.org/10.1016/j.memsci.2006.10.016
- Karnik BS, Davies SH, Chen KC, Jaglowski DR, Baumann MJ, Masten SJ. Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes. Water Res. 2005;39:728-34. https://doi.org/10.1016/j.watres.2004.11.017
- Oh BS, Jang HY, Hwang TM, Kang JW. Role of ozone for reducing fouling due to pharmaceuticals in MF (microfiltration) process. J. Membr. Sci. 2007;289:178-186. https://doi.org/10.1016/j.memsci.2006.11.052
- Chae SR, Yamamura H, Ikeda K, Watanabe Y. Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination. Water Res. 2008;42:2029-2042. https://doi.org/10.1016/j.watres.2007.12.011
- Choo KH, Lee H, Choi SJ. Iron and manganese removal and membrane fouling during UF in conjunction with prechlorination for drinking water treatment. J. Membr. Sci. 2005;267:18-26. https://doi.org/10.1016/j.memsci.2005.05.021
- Kim MJ, Choo KH, Park HS. Photocatalytic degradation of seawater organic matter using a submerged membrane reactor. J. Photochem. Photobiol. A Chem. 2010;216:215-220. https://doi.org/10.1016/j.jphotochem.2010.08.011
- Bolto B, Dixon D, Eldridge R, King S. Removal of THM precursors by coagulation or ion exchange. Water Res. 2002;36:5066-5073. https://doi.org/10.1016/S0043-1354(02)00232-4
- Bolto B, Dixon D, Eldridge R, King S, Linge K. Removal of natural organic matter by ion exchange. Water Res. 2002;36:5057-5065. https://doi.org/10.1016/S0043-1354(02)00231-2
- Bolto B, Dixon D, Eldridge R. Ion exchange for the removal of natural organic matter. React. Funct. Polym. 2004;60:171-182. https://doi.org/10.1016/j.reactfunctpolym.2004.02.021
- Fearing DA, Banks J, Guyetand S, et al. Combination of ferric and MIEX for the treatment of a humic rich water. Water Res. 2004;38:2551-2558. https://doi.org/10.1016/j.watres.2004.02.020
- Cornelissen ER, Moreau N, Siegers WG, et al. Selection of anionic exchange resins for removal of natural organic matter (NOM) fractions. Water Res. 2008;42:413-423. https://doi.org/10.1016/j.watres.2007.07.033
- Cornelissen ER, Beerendonk EF, Nederlof MN, van der Hoek JP, Wessels LP. Fluidized ion exchange (FIX) to control NOM fouling in ultrafiltration. Desalination 2009;236:334-341. https://doi.org/10.1016/j.desal.2007.10.084
- Han J, Kong C, Heo J, Yoon Y, Lee H, Her N. Removal of perchlorate using reverse osmosis and nanofiltration membranes. Environ. Eng. Res. 2012;17:185-190. https://doi.org/10.4491/eer.2012.17.4.185
- Kabsch-Korbutowicz M, Majewska-Nowak K, Winnicki T. Water treatment using MIEX(R)DOC/ultrafiltration process. Desalination 2008;221:338-344. https://doi.org/10.1016/j.desal.2007.01.092
- Huang H, Cho HH, Schwab KJ, Jacangelo JG. Effects of magnetic ion exchange pretreatment on low pressure membrane filtration of natural surface water. Water Res. 2012;46:5483-5490. https://doi.org/10.1016/j.watres.2012.07.003
- Humbert H, Gallard H, Suty H, Croue JP. Performance of selected anion exchange resins for the treatment of a high DOC content surface water. Water Res. 2005;39:1699-1708. https://doi.org/10.1016/j.watres.2005.02.008
- Humbert H, Gallard H, Jacquemet V, Croue JP. Combination of coagulation and ion exchange for the reduction of UF fouling properties of a high DOC content surface water. Water Res. 2007;41:3803-3811. https://doi.org/10.1016/j.watres.2007.06.009
- Fabris R, Lee EK, Chow CWK, Chen V, Drikas M. Pre-treatments to reduce fouling of low pressure micro-filtration (MF) membranes. J. Membr. Sci. 2007;289:231-240. https://doi.org/10.1016/j.memsci.2006.12.003
- Tsujimoto W, Kimura H, Izu T, Irie T. Membrane filtration and pre-treatment by GAC. Desalination 1998;119:323-326. https://doi.org/10.1016/S0011-9164(98)00176-3
- Kim KY, Kim HS, Kim J, Nam JW, Kim JM, Son S. A hybrid microfiltration-granular activated carbon system for water purification and wastewater reclamation/reuse. Desalination 2009;243:132-144. https://doi.org/10.1016/j.desal.2008.04.020
- Lin CF, Huang YJ, Hao OJ. Ultrafiltration processes for removing humic substances: effect of molecular weight fractions and PAC treatment. Water Res. 1999;33:1252-1264. https://doi.org/10.1016/S0043-1354(98)00322-4
- Li K, Qu F, Liang H, et al. Performance of mesoporous adsorbent resin and powdered activated carbon in mitigating ultrafiltration membrane fouling caused by algal extracellular organic matter. Desalination 2014;336:129-137. https://doi.org/10.1016/j.desal.2014.01.001
- Uyak V, Akdagli M, Cakmakci M, Koyuncu I. Natural organic matter removal and fouling in a low pressure hybrid membrane systems. Sci. World J. 2014;2014:11.
- Kang SK, Choo KH. Why does a mineral oxide adsorbent control fouling better than powdered activated carbon in hybrid ultrafiltration water treatment? J. Membr. Sci. 2010;355:69-77. https://doi.org/10.1016/j.memsci.2010.03.007
- Campinas M, Rosa MJ. Assessing PAC contribution to the NOM fouling control in PAC/UF systems. Water Res. 2010;44:1636-1644. https://doi.org/10.1016/j.watres.2009.11.012
- Ding C, Shang C. Mechanisms controlling adsorption of natural organic matter on surfactant-modified iron oxidecoated sand. Water Res. 2010;44:3651-3658. https://doi.org/10.1016/j.watres.2010.04.014
- Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ. Sci. Technol. 1994;28:38-46. https://doi.org/10.1021/es00050a007
- Cui X, Choo KH. Granular iron oxide adsorbents to control natural organic matter and membrane fouling in ultrafiltration water treatment. Water Res. 2013;47:4227-4237. https://doi.org/10.1016/j.watres.2013.04.060
- Kim J, Deng Q, Benjamin MM. Simultaneous removal of phosphorus and foulants in a hybrid coagulation/membrane filtration system. Water Res. 2008;42:2017-2024. https://doi.org/10.1016/j.watres.2007.12.017
- Shi W, Benjamin MM. Membrane interactions with NOM and an adsorbent in a vibratory shear enhanced filtration process (VSEP) system. J. Membr. Sci. 2008;312:23-33. https://doi.org/10.1016/j.memsci.2007.12.031
- Sperlich A, Werner A, Genz A, Amy G, Worch E, Jekel M. Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters: modeling and experimental approaches. Water Res. 2005;39:1190-1198. https://doi.org/10.1016/j.watres.2004.12.032
- Sperlich A, Schimmelpfennig S, Baumgarten B, et al. Predicting anion breakthrough in granular ferric hydroxide (GFH) adsorption filters. Water Res. 2008;42:2073-2082. https://doi.org/10.1016/j.watres.2007.12.019
- Genz A, Baumgarten B, Goernitz M, Jekel M. NOM removal by adsorption onto granular ferric hydroxide: equilibrium, kinetics, filter and regeneration studies. Water Res. 2008;42:238-248. https://doi.org/10.1016/j.watres.2007.07.005
- Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF. Adsorption and desorption of different organic matter fractions on iron oxide. Geochim. Cosmochim. Acta 1995;59:219-229. https://doi.org/10.1016/0016-7037(94)00282-Q
- Gu B, Mehlhorn TL, Liang L, McCarthy JF. Competitive adsorption, displacement, and transport of organic matter on iron oxide: I. Competitive adsorption. Geochim. Cosmochim. Acta 1996;60:1943-1950. https://doi.org/10.1016/0016-7037(96)00059-2
- Gu B, Mehlhorn TL, Liang L, McCarthy JF. Competitive adsorption, displacement, and transport of organic matter on iron oxide: II. Displacement and transport. Geochim. Cosmochim. Acta 1996;60:2977-2992. https://doi.org/10.1016/0016-7037(96)00157-3
- Edwards M, Benjamin MM, Ryan JN. Role of organic acidity in sorption of natural organic matter (NOM) to oxide surfaces. Colloids Surf. A Physicochem. Eng. Asp. 1996;107:297-307. https://doi.org/10.1016/0927-7757(95)03371-8
- Korshin GV, Benjamin MM, Sletten RS. Adsorption of natural organic matter (NOM) on iron oxide: effects on NOM composition and formation of organo-halide compounds during chlorination. Water Res. 1997;31:1643-1650. https://doi.org/10.1016/S0043-1354(97)00007-9
Cited by
- Microalgae membrane photobioreactor for further removal of nitrogen and phosphorus from secondary sewage effluent vol.32, pp.10, 2015, https://doi.org/10.1007/s11814-015-0043-9
- Experimental investigation and modeling of industrial oily wastewater treatment using modified polyethersulfone ultrafiltration hollow fiber membranes vol.32, pp.6, 2015, https://doi.org/10.1007/s11814-014-0310-1
- Membrane fouling control in low pressure membranes: A review on pretreatment techniques for fouling abatement vol.21, pp.2, 2016, https://doi.org/10.4491/eer.2016.017
- Characterization and Seawater Filtration Performance of Commerical Microfiltration and Ultrafiltration Membranes vol.39, pp.9, 2017, https://doi.org/10.4491/KSEE.2017.39.9.542
- Efficacy of CNT-bound polyelectrolyte membrane by spray-assisted layer-by-layer (LbL) technique on water purification vol.4, pp.62, 2014, https://doi.org/10.1039/c4ra05272b
- Reduction of biofouling using vanillin as a quorum sensing inhibitory agent in membrane bioreactors for wastewater treatment vol.6, pp.3, 2015, https://doi.org/10.12989/mwt.2015.6.3.189
- Hydrophobic surface modification of membrane distillation (MD) membranes using water-repelling polymer based on urethane rubber vol.57, pp.22, 2016, https://doi.org/10.1080/19443994.2015.1038111
- Effect of Aeration Applied During Different Phases of Anaerobic Digestion vol.9, pp.2, 2014, https://doi.org/10.1007/s12649-016-9785-9
- Roles of polypropylene beads and pH in hybrid water treatment of carbon fiber membrane and PP beads with water back-flushing vol.10, pp.2, 2019, https://doi.org/10.12989/mwt.2019.10.2.155
- Detection of low-level humic acid in water using room temperature-synthesized copper (I) oxide colloids vol.9, pp.4, 2019, https://doi.org/10.1557/mrc.2019.128
- Nanocomposite hollow fiber nanofiltration membranes: Fabrication, characterization, and pilot‐scale evaluation for surface water treatment vol.136, pp.45, 2019, https://doi.org/10.1002/app.48205
- The Role of Humic Acid, PP Beads, and pH with Water Backwashing in a Hybrid Water Treatment of Multichannel Alumina Microfiltration and PP Beads vol.10, pp.1, 2020, https://doi.org/10.3390/membranes10010003
- The Function of Adsorption, Photo-Oxidation, and Humic Acid Using Air Backwashing in Integrated Water Treatment of Multichannel Ceramic MF and PP Particles vol.10, pp.2, 2020, https://doi.org/10.3390/membranes10020028
- Effect of Two Stages Adsorption as Pre-Treatment of Natural Organic Matter Removal in Ultrafiltration Process for Peat Water Treatment vol.988, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/msf.988.114
- Prospects for the Use of Electrooxidation and Electrocoagulation Techniques for Membrane Filtration of Irrigation Water vol.7, pp.2, 2014, https://doi.org/10.1007/s40710-020-00439-2
- Water-dispersible few-layer graphene flakes for selective and rapid ion mercury (Hg2+)-rejecting membranes vol.1, pp.3, 2020, https://doi.org/10.1039/d0ma00060d
- Recent advances in the characterization and the treatment methods of effluent organic matter vol.11, pp.4, 2014, https://doi.org/10.12989/mwt.2020.11.4.257
- A critical review of membrane modification techniques for fouling and biofouling control in pressure-driven membrane processes vol.5, pp.2, 2020, https://doi.org/10.1007/s41204-020-00077-x
- Advances in Circular Bioeconomy Technologies: From Agricultural Wastewater to Value-Added Resources vol.8, pp.3, 2014, https://doi.org/10.3390/environments8030020
- Catalytic degradation of acetaminophen by Fe and N Co-doped multi-walled carbon nanotubes vol.201, pp.None, 2014, https://doi.org/10.1016/j.envres.2021.111535
- Retention of natural organic matter by ultrafiltration and the mitigation of membrane fouling through pre-treatment, membrane enhancement, and cleaning - A review vol.44, pp.None, 2021, https://doi.org/10.1016/j.jwpe.2021.102374