• Title/Summary/Keyword: low velocity

Search Result 2,854, Processing Time 0.054 seconds

Impact analysis of composite plate by multiscale modeling (멀티스케일 모델링에 의한 복합재료 평판의 충격해석)

  • Ji Kuk Hyun;Paik Seung Hoon;Kim Seung Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.67-70
    • /
    • 2004
  • An investigation was performed to study the impact damage of the laminated composite plates caused by a low- velocity foreign object with multi-scale modeling based on the concepts of Direct Numerical Simulation (DNS)[4]. In the micro-scale part, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. A micro-scalemodel was developed for predicting the initiation of the damage and the extent of the final damage as a function of material properties, laminate configuration and the impactor's mass, etc. Anda macro-scale model was developed for description of global dynamic behavior. The connection betweenmicroscopic and macroscopic is implemented by the tied interface constraints of LS-DYNA contact card. A transient dynamic finite element analysis was adopted for calculating the contact force history and the stresses and strains inside the composites during impact resulting from a point-nose impactor. The low-velocity impact events such as contact force, deformation, etc. are simulated in the macroscopic sense and the impact damages, fiber-breakage, matrix cracking and delamination etc. are examined in the microscopic sense.

  • PDF

Characterization of odourous compounds in air, leachate, stream and well in and around Taju-Bello Dumpsite, Lagos, Nigeria

  • Azeez, L.;Oyedeji, O.A.;Abdulsalami, I.O.;Adewuyi, S.O.
    • Advances in environmental research
    • /
    • v.2 no.2
    • /
    • pp.143-153
    • /
    • 2013
  • This study investigated the concentrations of odourous compounds in air, leachate, stream and well in and around Taju-Bello dumpsite. Meteorological parameters (temperature, relative humidity, wind velocity) and six odour families comprising sulphur ($H_2S$), ammonia ($NH_3$), aromatic (benzene, toluene, ethylbenzene, styrene, p-xylene, m-xylene), aliphatic (hexane), oxygenated (formaldehyde, acetaldehyde) and halogenated (tetrachloroethene, trichloroethene, carbontetrachloride) compounds were measured. Meteorological parameters suggested low dispersal of pollutants at L1 with possible perspiration and suffocation from exposure to high temperature, relative humidity and low wind velocity. The trend of abundance of odourous compounds at studied locations is of the order dumpsite (L1) > leachate (L4) > 100 m away from dumpsite (L2) > 200 m away from dumpsite (L3) > stream (L5) > well (L6). $H_2S$, Oxygenated and aromatic compounds were the major contributors to odour strength in these locations. Correlation, factor and cluster analyses of the data revealed similarities of sources as biogenics and xenobiotics inherent in the wastes as the main sources of these odourous compounds.

Sea-Level Pressure Response to the Fast Solar Wind Stream

  • Cho, Il-Hyun;Kwak, Young-Sil;Marubashi, Katsuhide;Chang, Heon-Young;Cho, Kyung-Suk;Kim, Yeon-Han;Park, Young-Deuk;Choi, Ho-Sung
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.39.3-39.3
    • /
    • 2010
  • Solar-terrestrial links in short-time scales(daily ~monthly) are extensively explored in recent years: such as a response of low cloud amounts to the Forbush decrease, a response of Northern Atlantic oscillation index to sudden increase in electric field intensity of solar wind and so on (e.g., Svensmark et al., 2009; Boberg & Lundstedt, 2002). In this study, we perform the superposed epoch analysis to see any possible response of the sea-level pressure over Korean peninsula to the fast solar wind stream. Data sets are daily values, and zero days are determined to be days when the solar wind velocity exceeds 800km/s. Average profile of superposed sea-level pressure shows a gradual increase during the first 2 days and a decrease afterward below the normal level with a low pressure condition maintained for a few days. This result indicates that the sea-level pressure may respond to the fast solar wind stream. In other words, the average profile of sea-level pressure mimics the average velocity profiles. The correlation coefficient between two average profiles is 0.80, with 2 day lag.

  • PDF

A Study on the Frequency Response Signals of a Servo Valve (서보밸브의 주파수 응답 신호에 관한 연구)

  • Yun, Hongsik;Kim, SungDong
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2021
  • The flow signal or spool position signal is used to determine the dynamic characteristics of directional control valves. Alternatively, the signal of spool position or flow can be replaced with the velocity of a low friction, low inertia actuator. In this study, the frequency response of the servo valve equipped with a spool position transducer is measured with a metering cylinder. The input signal, spool displacement, load pressure, and velocity of the metering cylinder are measured, and the theoretical results from the transfer function analysis are verified. The superposition rule for magnitude ratio and phase angle was found to be always applicable among any signal type, and it was found that the load pressure signal is not appropriate for use as the signal for measuring the frequency response of a servo valve. It was confirmed that the frequency response of a servo valve using metering cylinder was similar to the results from a spool displacement signal. The metering cylinder used for measuring the frequency response of a servo valve should be designed to have sufficiently greater bandwidth frequency than the bandwidth frequency of the servo valve.

Single Frequency GPS Relative Navigation for Autonomous Rendezvous and Docking Mission of Low-Earth Orbit Cube-Satellites

  • Shim, Hanjoon;Kim, O-Jong;Yu, Sunkyoung;Kee, Changdon;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.357-366
    • /
    • 2020
  • This paper addressed a relative navigation method for autonomous rendezvous and docking of cube-satellites using single frequency Differential GPS (DGPS) under the intermittent communication between satellites. Since the ionospheric error of GPS measurement is variable depending on the visible satellites, a few meters error of relative navigation is occurred in the Low-Earth Orbit (LEO) environment. Therefore, it is essential to remove the ionospheric error to perform relative navigation. Besides, an intermittent communication period for receiving GPS measurements of the target satellite is limited for getting information every sampling time. To solve this problem, a method combining range domain DGPS and orbit propagation is proposed in this paper. The proposed method improves the performance of DGPS by using Hatch filter and solves an intermittent communication problem by estimating the relative position and velocity using Hill-Clohessy-Wiltshire Equation. Through the simulation, it is verified that the suggested algorithm provides the relative position error within RMS 0.5 m and the relative velocity error within RMS 3 cm/s. Furthermore, it has the advantage that it is suitable for real-time implementation using single-frequency GPS measurements and is computationally efficient.

Degradation of roller compacted concrete subjected to low-velocity fatigue impacts and salt spray cycles

  • Gao, Longxin;Lai, Yong;Zhang, Huigui;Zhang, Jingsong;Zhang, Wuman
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.411-418
    • /
    • 2021
  • Roller compacted concrete (RCC) used in the island reef airport runway will be subjected to the coupling actions of the fatigue impacts and the salt spray cycles, which will accelerate the deterioration of runway concrete and even threaten the flight safety. A cyclic impact testing machine and a climatic chamber were used to simulate the low-velocity fatigue impact and the salt spray cycles, respectively. The physical properties, the microstructures and the porosity of RCC were investigated. The results show the flexural strength firstly increases and then decreases with the increase of the fatigue impacts and the salt spray cycles. However, the decrease in the flexural strength is significantly earlier than the compressive strength of RCC only subjected to the salt spray cycles. The chlorine, sulfur and magnesium elements significantly increase in the pores of RCC subjected to 30000 fatigue impacts and 300 salt spray cycles, which causes the decrease in the porosity of RCC. The coupling effects of the fatigue impacts and the salt spray cycles in the later period accelerates the deterioration of RCC.

A Study on the Impact Behavior of Bulletproof Materials According to the Combining Method

  • Jihyun Kwon;Euisang Yoo
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.157-164
    • /
    • 2022
  • Representative bulletproof materials, such as aramid or ultra-high molecular weight polyethylene(UHMWPE), have excellent strength and modulus in the plane direction but are very vulnerable to forces applied in the thickness direction. This paper reports a study on the effects of reinforcement in the thickness direction when bulletproof composite fabrics are prepared to improve their performance. Aramid and UHMWPE fabrics were combined using the film-bonding, needle-punching, or stitching methods and then subjected to low-velocity projectile and ball-drop impact tests. The results of the low-velocity projectile test indicated that the backface signature(BFS) decreased by up to 29.2% in fabrics obtained via the film-bonding method. However, the weight of the film-bonded fabric increased by approximately 23% compared with that obtained by simple lamination, and the fabric stiffened on account of the binder. Flexibility, light weight for wearability, and excellent bulletproof performance are very important factors in the development of bulletproof materials. When the needle-punching method was used, the BFS increased as the fibers sustained damage by the needle. When the composite fabrics were combined by stitching, no significant difference in weight and thickness was observed, and the BFS showed similar results. When a diagonal stitching pattern was employed, the BFS decreased as the stitching density increased. By contrast, when a diamond stitching pattern was used, the fabric fibers were damaged and the BFS increased as the stitching density increased.

Electrocardiogram-Gated Multi-Angle Doppler Optical Coherence Tomography (심전도 게이트를 사용한 다관점 도플러 광 단층촬영법)

  • Ahn, Yeh-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.685-691
    • /
    • 2011
  • The aim of this study is to point out the uniqueness of Doppler optical coherence tomography (DOCT) for use in a probe station for (in vivo) visualization of microscale flow and structure and to maximize the effectiveness of DOCT by overcoming its limitations. Conventional DOCT produces images of only one of the velocity components that is parallel to the incident light. In this study, a multi-angle DOCT to quantify a velocity vector field is proposed; this is an extension from a velocity scalar field to a vector field. Quantifying an instantaneous three-dimensional velocity field in a pulsating flow is another challenge because of its limited frame rate. The in-vivo pulsating blood flow is measured by using an electrocardiogram-gated multi-angle DOCT in a hamster cheek pouch model. It is shown that the aliasing problem caused by a relatively low frame rate is resolved by using this method of measurement.

Comparison of Flood Discharge and Velocity Measurements in a Mountain Stream Using Electromagnetic Wave and Surface Image (전자파와 수표면 영상을 이용한 산지하천 홍수유량 및 유속 계측 비교 연구)

  • Yang, Sung-Kee;Kim, Dong-Su;Yu, Kwon-Kyu;Kang, Meyong-Su;Jung, Woo-Yul;Lee, Jun-Ho;Kim, Yong-Seok;You, Ho-Jun
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.739-747
    • /
    • 2012
  • Due to the difficulties for measuring flood discharge in the dangerous field conditions, conventional instruments with relatively low accuracy such as float still have been widely utilized for the field survey. It is also limited to use simple stage-discharge relationship for assessment of the flood discharge, since the stage-discharge relationship during the flood becomes complicated loop shape. In recent years, various non-intrusive velocity measurement techniques such as electromagnetic wave or surface images have been developed, which is quite adequate for the flood discharge measurements. However, these new non-intrusive techniques have little tested in the flood condition, though they promised efficiency and accuracy. Throughout the field observations, we evaluated the validity of these techniques by comparing discharge and velocity measurements acquired concurrently during the flood in a mountain stream. As a result, the flood discharge measurements between electromagnetic wave and surface image processing techniques showed high positive relationship, but velocities did not matched very well particularly for the high current speed more 3 m/s. Therefore, it should be noted here that special cares are required when the velocity measurements by those two different techniques are used, for instance, for the validation of the numerical models. In addition, authors assured that, for the more accurate flood discharge measurements, velocity observation as well as stage height is strongly necessary owing that the unsteady flow occurs during the flood.

Impact Response Behaviors of Laminated Composite Plates Subjected to the Transversely Impact of a Steel Ball (강구에 의한 횡방향 충격을 받는 적층복합판의 충격 응답 거동)

  • 김문생;김남식;박승범;백인환
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.44-56
    • /
    • 1993
  • The purpose of this paper is to analyze the impact response behaviors of glass/epoxy laminated composite plates subjected to the transversely impact of a steel ball. For this purpose, dynamic finite element analysis based on the higher-order shear defomation plate theory is used to compute the contact forces, rebound velocity of a steel ball, and dynamic strain response histories. And low-velocity and high-velocity impact experiments were conducted to compare the results and compute the wave propagation velocities. The results obtained from impact experiments are in good agreement with those of dynamic finite element analysis. Also the wave propagation velocities obtained from high-velocity impact experiments and wave propagation theory agree well, and wave velocities were higher in the smaller radius of steel ball.

  • PDF