• Title/Summary/Keyword: low temperature sintering.

Search Result 762, Processing Time 0.029 seconds

Low-Temperature Sintering and piezoelectric Properties of PMW-PNN-PZT ceramics (PMW-PNN-PZT계 세라믹의 저온 소결 및 압전특성에 관한 연구)

  • Shin, Hye-Gyeong;Bak, Seong-U;Seong, Nak-Jin;Bae, Seon-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1906-1908
    • /
    • 2005
  • In this study, in order to develop the low temperature sintering ceramics, PMW-PNN-PZT ceramics adding CuO, $B_2O_3$ were manufactured, and their piezoelectric properties is investigated. The results of this study were gotten such as follows. The electromechanical coupling coefficient(kp) showed good properites on the whole, showed its maximum value 36.88 in specimens sintered at $900[^{\circ}C]$, 10[mol%] $B_2O_3$. The mechanical quality coefficient(Qm) showed its maximum value 161.601 in specimens sintered at $1100[^{\circ}C]$, 15[mol%] $B_2O_3$.

  • PDF

The microwave dielectric properties of $Bi_{(1-x)}Tm_xNbO_4$ (마이크로파 유전체 $Bi_{(1-x)}Tm_xNbO_4$의 유전특성)

  • Hwang, Chang-Gyu;Jang, Gun-Eik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.662-665
    • /
    • 2002
  • The microwave dielectric properties and the microstructures of $Tm_2O_3$-modified $BiNbO_4$ ceramics were investigated. $Bi_{(1-x)}Tm_xNbO_4$ ceramics combined with orthorhombic and triclinic phases were identified at sintering temperatures of $920{\sim}960^{\circ}C$. The apparent density decreased slightly with the increasing Tm content. Regardless of the Tm content the dielectric constant $(\varepsilon_r)$ of all compositions except x=0.1 in $Bi_{(1-x)}Tm_xNbO_4$ ceramics saturated at the range of 42~44. The $Q{\times}f_0$ values of 6,000-12,000(GHz) were obtained for all compositions when the sintering temperatures were in the range of $920{\sim}960^{\circ}C$. The temperature coefficient of the resonant frequency$(\tau_f)$ can be also adjusted with increasing the amount of the doped Tm from a positive value of $+15ppm/^{\circ}C$ to a negative value of $-20ppm/^{\circ}C$. The $Bi_{(1-x)}Tm_xNbO_4$ ceramics can be possibly applied to multilayer microwave devices with low processing temperatures.

  • PDF

Low Temperature Sintering and Microwave Dielectric Properties of Alumina-Silicate/Zinc Borosilicate Glass Composites (Alumina-silicate/zinc borosilicate glass 복합체의 저온 소결 및 유전 특성)

  • Kim, Kwan-Soo;Um, Gyu-Ok;Yoon, Sang-Ok;Kim, Shin;Kim, Yun-Han;Kim, Kyung-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.314-314
    • /
    • 2008
  • The low temperature sintering and the dielectric properties of $Al_2O_3/SiO_2$-zinc borosilicate glass composites were investigated in the view of the application for LTCC. When the sintering was conducted at $900^{\circ}C$ $ZnAl_2O_4$ and $ZnB_2O_4$ compounds formed at the $Al_2O_3$-rich and the $SiO_2$-rich compositions, respectively. The reaction between ZBS glass and $Al_2O_3/SiO_2$ caused the formation of these compounds. The $Al_2O_3/SiO_2$ ratio affected the dielectric properties. The excellent dielectric properties, i.e., Q$\times$f value= 40,000 GHz and ${\varepsilon}_r$=4.5, were obtained in the $Al_2O_3/SiO_2$-ZBS glass system and fabricated the LTCC substrate materials.

  • PDF

Control of Glass Infiltration at the Al2O3/Glass/Al2O3 Interface

  • Jo, Tae-Jin;Yeo, Dong-Hun;Shin, Hyo-Soon;Hong, Youn-Woo;Cho, Yong-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.32-34
    • /
    • 2011
  • A zero-shrinkage sintering process in which the shrinkage of the x-y axis is controlled to be zero is in great demand due to the high integration trend in ceramic modules. Among the zero-shrinkage sintering processes available, the glass infiltration method proposed in the preliminary study with an $Al_2O_3/Glass/Al_2O_3$ structure is one promising method. However, problems exist in regard to the glass infiltration method, including partially incomplete joining between $Al_2O_3$ and glass layers due to the precipitate of Ti-Pb rich phase during the sintering process. Therefore, we wish to solve the de-lamination problems and suggest a mechanism for delamination and the solutions in the zero-shrinkage low temperature co-fired ceramic (LTCC) layers. The de-lamination problems diminished using the Pb-BSi-O glass without $TiO_2$ in Pb-B-Ti-Si-O glass and produced a very dense zero-shrinkage LTCC.

Piezoelectric and dielectric Properties for Multilayer Piezoelectric Transformer Of Modified $PbTiO_3$ system ceramics (적층 압전 변압기용 변성 $PbTiO_3$ 세라믹스의 압전 및 유전 특성)

  • Yoo, Kyung-Jin;Yoo, Ju-Hyun;Jeong, Yeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.344-345
    • /
    • 2006
  • In this study, in order to develop low temperature sintering piezoelectric transformer, $(Pb_{0.99-x}Ca_xSr_{0.01})Ti_{0.96}(Mn_{1/3}Sb_{2/3})_{0.04}O_3$ ceramic systems were fabricated using $Na_2CO_3-Li_2CO_3$ as sintering aids and investigated with the amount of Ca substitution. The piezoelectric transformer requires high electromechanical coupling factor $k_t$ and high mechanical quality factor $Q_{mt}$ for generating high output power At the ($PbCaSr)Ti(MnSb)O_3$ ceramics with 24mol% Ca substitution sintered at $900^{\circ}C$, electromechanical coupling factor $k_t$ and mechanical quality factor $Q_{mt}$ showed the optimal values of 0.504 and 1655 respectively, for thickness vibration mode multilayer piezoelectric transformer application.

  • PDF

Sintering and Dielectric Properties of $BaO-Nd_2O_3-TiO_2$ Microwave Ceramics for LTCC RE module (LTCC RF 모듈용 $BaO-Nd_2O_3-TiO_2$계 세라믹스의 저온소결 및 마이크로파 유전특성)

  • Shin, Dong-Soon;Choi, Young-Jin;Park, Jae-Hwan;Nahm, Sahn;Park, Jae-Gwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • The effects of glass addition on the low-temperature sintering and microwave dielectric properties of $BaO-Nd_2O_3-TiO_2$ dielectric ceramics were studied. When 10∼13 wt% of lithium borosilicate glass was added, the sintering temperature decreased from 130$0^{\circ}C$to 850-$900^{\circ}C$relative density of more than 97% was obtained. When the sample was sintered at $850^{\circ}C$ with 10 wt% of glass, the dielectric properties of $\epsilon_r{\ge}54$, $Q{\times}f_0{\ge}2300$, and $\tau_f{\ge}+8ppm/^{\circ}C$ were obtained.

  • PDF

The Properties on Ceramic/glass Composites of SiO2-B2O3-R(CaO, BaO, ZnO, Bi2O3 Borosilicate Glass System for Low Temperature Ceramics (저온 소결 세라믹스용 SiO2-B2O3-R(CaO, BaO, ZnO, Bi2O3 붕규산염계 세라믹/유리 복합체의 특성)

  • Kim, Kwan-Soo;Yoon, Sang-Ok;Shim, Sang-Heung;Park, Jong-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.19-24
    • /
    • 2007
  • The effects of $B_2O_3-SiO_2-R(R;CaO,\;BaO,\;ZnO,\;Bi_2O_3)$ borosilicate glass system on the sintering behavior and microwave dielectric properties of ceramic/glass composites were investigated as functions of modifier, glass addition ($30{\sim}50\;vol%$) and sintering temperature ($500{\sim}900^{\circ}C$ for 2 hrs). The addition of 50 and 45 vol% glass ensured successful sintering below $900^{\circ}C$. Sintering characteristics of the composites were well described in terms of modifier. Borosilicate glass enhanced the reaction with $Al_{2}O_{3}$ to form pores, second phases and liquid phases, which was responsible to component of modifier. Dielectric constant (${\varepsilon}_{r},\;Q{\times}f_{o}$) and temperature coefficient of resonant frequency (${\tau}_{f}$) of the composite with 50 and 45 vol% glass contents($B_{2}O_{3}:SiO_{2}:R=25:10:65$) demonstrated A-CaBS(7.8, 2,560 GHz, -81ppm/$^{\circ}C$), A-BaBs(5.8, 3.130 GHz, -64 ppm/$^{\circ}C$), A-ZnBS(5.7, 17,800 GHz, -21 ppm/$^{\circ}C$), A-BiBs(45 vol% glass in total)(8.3, 2,700 GHz, -45 ppm/$^{\circ}C$) which is applicable to substrate requiring an low dielectric properties.

Unidirectional Sintering in LTCC Substrate (LTCC 기판의 일 방향 소결)

  • Sun Yong-Bin;Ahn Ju-Hwan;Kim Seuk-Buom
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.37-41
    • /
    • 2004
  • As mobile communication devices use wide bands for large data transmission, Low Temperature Co-fired Ceramic(LTCC) has been a candidate for module substrate, for it provides better electrical properties and enables various embedded passive devices compared to conventional PCB. The LTCC, however, has applied in limited area because of non-uniform shrinkage. Hybrid heating was developed to raise sample temperature uniformly in a short period of time This leads to unidirectional sintering which enables sample to be sintered layer by layer from the bottom, resulting in more stable shape of interconnection at the top surface of the sample than conventional electric furnace heating. When sintering properties of substrate and electrical/mechanical properties of interconnection were compared, hybrid heating showed possibility to be applicable to substrate miniaturization and interconnection densification superior to electric furnace heating.

  • PDF

Microstructure and Piezoelectric Properties of Low Temperature Sintering PMW-PNN-PZT-BF Ceramics According to PNN Substitution (PNN 치환에 따른 PMW-PNN-PZT-BF 세라믹스의 미세구조와 압전 특성)

  • Sin, Sang-Hoon;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.90-94
    • /
    • 2016
  • In this work, [$Pb(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_x(Zr_{0.5}Ti_{0.5})_{0.97-x}O_3-BiFeO_3$] (x=0.02 to 0.12) composition ceramics were fabricated by the conventional soild state reaction method and their microstructure and piezoelectric properties were investigated according to PNN substitution. The addition of small amount of $BiFeO_3$, $Li_2CO_3$, and $CaCO_3$ were used in order to decrease the sintering temperature of the ceramics. The XRD (x-ray diffraction patterns) of all ceramics exhibited a perovskite structure. The sinterability of PMW-PNN-PZT-BF ceramics was remarkably improved using liquid phase sintering of $CaCO_3$, $Li_2CO_3$. However, it was identified from of the X-ray diffraction patterns that the secondary phase formed in grain boundaries decreased the piezoelectric properties. According to the substitution of PNN, the crystal structure of ceramics is transformed gradually from a tetragonal to rhombohedral phase. The x=0.10 mol PNN-substituted PMW-PNN-PZT-BF ceramics sintered at $920^{\circ}C$ showed the optimum values of piezoelectric constant($d_{33}$), piezoelectric figure of merit($d_{33{\cdot}}g_{33}$), planar piezoelectric coupling coefficient($k_p$) and density : $d_{33}=566$ [pC/N], $g_{33}=29.28[10^{-3}mV/N]$, $d_{33{\cdot}}g_{33}=16.57[pm^2/N]$, $k_p=0.61$, density=7.82 [$g/cm^3$], suitable for duplex ultrasonic sensor application.

Low Temperature Sintering Properties of the $0.6TiTe_3O_8-0.4MgTiO_3$ Ceramics with Sintering Adds (소결조제 첨가에 따른 $0.6TiTe_3O_8-0.4MgTiO_3$ 세라믹스의 jdhs 소결 특성)

  • Kim, Jae-Sik;Ryu, Ki-Won;Koh, Jung-Hyuk;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.114-115
    • /
    • 2007
  • In this study, low temperature sintering property of the $0.6TiTe_3O_8-0.4MgTiO_3$ ceramics with sintering adds were investigated for LTCC application which enable to cofiring with Ag electrode. $TiTe_3O_8$ mixed with $MgTiO_3$ to improve the temperature property. In the X-ray diffraction patterns, the columbite structure of $TiTe_3O_3$ phase and ilmenite structure of $MgTiO_3$ phase were coexisted in all specimens. In the case of $H_3BO_3$ addition, the bulk density and dielectric constant were decreased but quality factor was increased with amount of $H_3BO_3$ additions. The TCRF of the $0.6TiTe_3O_8-0.4MgTiO_3+xwt%H_3BO_3$ ceramics were moved to positive direction. In another case, SnO addition, the bulk density and dielectric constant were increased but Quality factor was decreased with amount of SnO additions. The TCRF of the $0.6TiTe_3O_8-0.4MgTiO_3$+ywt%SnO ceramics were shifted to negative direction. The dielectric constant, quality factor and TCRF of the $0.6TiTe_3O_8-0.4MgTiO_3$ ceramics with $2wt%H_3BO_3$ and 2.5wt%SnO sintered at $830^{\circ}C$ for 1h, were 28.5, 39,570GHz, $+9.34ppm/^{\circ}C$ and 29.86, 35,80000z, $-0.58ppm/^{\circ}C$, respectively.

  • PDF