• Title/Summary/Keyword: low temperature composition

Search Result 974, Processing Time 0.033 seconds

Effects of Construction and Operation of Nuclear Power Plants on Benthic Marine Algae (원자력발전소의 건설과 가동이 저서 해조류에 미치는 영향)

  • 김영환
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.4
    • /
    • pp.379-387
    • /
    • 1999
  • During the past several decades, electricity generating plant increased with remarkable rapidity in Korea. Recently the increase has been much more rapid as the rate of industrialization has accelerated. Construction of nuclear power plants in coastal areas inevitably caused the perturbation of critical coastal habitats and thus influenced marine algal species composition. Particularly, an increase in the building of nuclear power plants led the amounts of heat discharged to increase exponentially. As far as the effects of cooling water and thermal discharges are concerned, benthic marine algae are likely to be vulnerable to a discharge. Heated effluents from nuclear power plants, with the temperature rises of 7~12$^{\circ}C$ under normal operating and design conditions, are discharged through the discharge canal and into natural water bodies. It is clear that the characteristic marine algal community is developed in the area affected by the thermal discharges; i.e. low species richness and low species diversity. Nevertheless, it is worthwhile to note that elevated temperatures exert differential effects depending on the algal populations. Benthic marine algae grown at the discharge canal can be regarded as warm tolerant species. 35 species (4 blue-green, 9 green, 8 brown and 14 red algae) of marine algae occurred more than 20eye frequency at discharge canal of three nuclear power plants in the east coast during 1992 ~ 1998 and thus can be categorized as warm tolerant species in Korea. To minimize the ecological impacts of waste heat on benthic marine algae, it is recommended that, in the future, nuclear power plants will have to employ some form of closed-cycle cooling for the condensers.

  • PDF

Studies on the Recovery of Triglyceride from Used Shortening by Supercritical Fluid Extraction (초임계유체 추출에 의한 폐식용유의 재활용에 대한 기초연구)

  • Han, Byung-Seok;Yoon, Jung-Ro;Kwon, Young-An;Jung, Mun-Yhung;Kim, Kong-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1300-1307
    • /
    • 1999
  • Supercritical fluid extraction was applied to recycling triglyceride from used shortening. Used shortening and its fractions were analyzed with high performance size exclusion chromatography for their composition in triglycerides, polymer and low molecular weight compounds. Conjugated diene value and color of the fractions were also measured with a UV spectrophotometer and a colorimeter, respectively. Pressure and temperature ranges employed were $15{\sim}30$ MPa and $40{\sim}60^{\circ}C$, respectively. Concentration of fat in supercritical (SC) $CO_2$ ranged from $0.3\;X\;10^{-3}{\sim}7.4\;X10^{-3}(g\;fat/g\;CO_2)$. An exponential relation between concentration of fat in SC $CO_2$ and density was observed. Color of the extracts was light yellow which was very close to that of the fresh shortening. Low molecular weight compounds were preferentially concentrated in the initial fraction, while polymer was extracted in the final fraction. Conjugated diene value of the initial fractions was clearly lower than that of feed. It increased sharply as the polymer content in the fraction became significantly large.

  • PDF

Preparation and Properties of Low Density Polyethylene/Organo-clay Nanocomposite (저밀도 폴리에틸렌 나노복합재료의 제조 및 특성)

  • Moon, Sung-Chul;Jung, Hyo-Sun;Lee, Jae-CHul;Hong, Jin-Who;Choi, Jae-Kon;Jo, Byung-Wook
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.52-60
    • /
    • 2005
  • In this study, low density polyethylene/organo-clay nanocomposites were prepared by melt blending. Thermal property, structure, and morphology of the LDPE/organo-clay nanocomposites were investigated. When the composition ratios of the compounds of LDPE/PE-g-MA/organo-clay were 90/10/1~10 (w/w/w), X-ray diffractograms of LDPE/organo-clay nanocomposites revealed that the intercalation of polymer chains lead to increase the spacing between clay layers. TEM microphotographs showed that LDPE was intercalated into organo-clay. TGA performed under air atmosphere demonstrated a great increase in thermal stability of the LDPE/organo-clay nanocomposties. The maximum decomposition temperature of LDPE/organo-clay nanocomposite was increased about $80^{\circ}C$ compared with pure LDPE. When the organo-clay contents were 1.0~5.0 wt%, the LOI values were increased with increasing the organo-clay content, but in the case of the contents more than 5.0 wt%, the LOI values were not increased any more.

Selective Catalytic Reduction of NO by H2 over Pt-MnOx/ZrO2-SiO2 Catalyst (Pt-MnOx/ZrO2-SiO2 촉매에서 수소에 의한 일산화질소의 선택적 촉매 환원반응)

  • Kim, Juyoung;Ha, Kwang;Seo, Gon
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.443-450
    • /
    • 2014
  • Selective catalytic reduction of nitrogen monoxide by hydrogen ($H_2$-SCR of NO) over platinum catalysts impregnated on zirconia-incorporated silica ($ZrO_2-SiO_2$) and manganese oxide ($MnO_x$) was investigated. $Pt-MnO_x$ catalyst showed low conversions and low yields of $N_2O$ and $NO_2$ at $100{\sim}350^{\circ}C$. On the other hand, NO conversions over $Pt/ZrO_2-SiO_2$ were very high, but $N_2O$ was predominantly produced at $100-150^{\circ}C$ and the yield of $NO_2$ increased with temperature at $200-300^{\circ}C$, resulting in poor $N_2$ yields. $Pt-MnO_x/ZrO_2-SiO_2$ exhibited a small enhancement in $N_2$ yield at $100-150^{\circ}C$ due to the synergy of $MnO_x$ and $ZrO_2-SiO_2$. The surface composition and oxidation state of the catalyst components and the acidity of the catalysts were examined. IR spectra of the adsorption of NO and their subsequent reactions with hydrogen on these catalysts were also recorded. The variations of conversion and product yield according to the catalyst components in the $H_2$-SCR of NO were discussed in relation to their catalytic roles.

Effect of PE Film Thickness on MA (Modified Atmosphere) Storage of Strawberry (Polyethylene Film 두께에 따른 딸기의 MA(Modified Atmosphere) 저장 효과)

  • 김종국;문광덕;손태화
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.1
    • /
    • pp.78-84
    • /
    • 1993
  • This study was conducted to investigate the effect of various polyethylene (PE) film packaging on the quality of strawberry during storage at low temperature. Gas composition in film was changed rapidly at early stage of storage and then kept at the level of 5~10% $CO_2$and 1~3% $O_2$. Weight loss and decay rate were low at 0.08mm PE film packed strawberries. Titratable acidity, pH and soluble solids were changed slightly during storage but its large difference according to film thickness was not observed. Decrease of flesh firm-ness and a value was restrained by PE film packaging. Free sugar of strawberry was composed of glucose and fructose in similar content and it was decreased a little during storage but the difference according to film thickness was not observed. The organic acids in strawberry were citric acid, malic acid, succinic acid, ascorbir acid, oxalic acid, tartaric acid and pyruvic acid and the major organic acid was citric acid. The contents of citric acid, malic acid, succinir acid and ascorbic acid were decreased and oxalic acid and tartaric arid were not changed during storage but pyruvic acid was increased in early stage and then decreased. These changes of organic acid were slight in packaged with 0.08mm PE film strawberry.

  • PDF

FISSION PRODUCT AND ACTINIDE RELEASE FROM THE DEBRIS BED TEST PHEBUS FPT4: SYNTHESIS OF THE POST TEST ANALYSES AND OF THE REVAPORISATION TESTING OF THE PLENUM SAMPLES

  • Bottomley P.D.W.;Gregoire A.C.;Carbol P.;Glatz J.P.;Knoche D.;Papaioannou D.;Solatie D.;Van Winckel S.;Gregoire G.;Jacquemain D.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.163-174
    • /
    • 2006
  • The $Ph{\acute{e}}bus$ FP project is an international reactor safety project. Its main objective is to study the release, transport and retention of fission products in a severe accident of a light water reactor (LWR). The FPT4 test was performed with a fuel debris bed geometry, to look at late phase core degradation and the releases of low volatile fission products and actinides. Post Test Analyses results indicate that releases of noble gases (Xe, Kr) and high-volatile fission products (Cs, I) were nearly complete and comparable to those obtained during $Ph{\acute{e}}bus$ tests performed with a fuel bundle geometry (FPT1, FPT2). Volatile fission products such as Mo, Te, Rb, Sb were released significantly as in previous tests. Ba integral release was greater than that observed during FPT1. Release of Ru was comparable to that observed during FPT1 and FPT2. As in other $Ph{\acute{e}}bus$ tests, the Ru distribution suggests Ru volatilization followed by fast redeposition in the fuelled section. The similar release fraction for all lanthanides and fuel elements suggests the released fuel particles deposited onto the plenum surfaces. A blockage by molten material induced a steam by-pass which may explain some of the low releases. The revaporisation testing under different atmospheres (pure steam, $H_2/N_2$ and steam /$H_2$) and up to $1000^{\circ}C$ was performed on samples from the first upper plenum. These showed high releases of Cs for all the atmospheres tested. However, different kinetics of revaporisation were observed depending on the gas composition and temperature. Besides Cs, significant revaporisations of other elements were observed: e.g. Ag under reducing conditions, Cd and Sn in steam-containing atmospheres. Revaporisation of small amounts of fuel was also observed in pure steam atmosphere.

Effects of Poly(Styrene-Co-Maleic acid) as Adhesion Promoter on Rheology of Aqueous Cu Nanoparticle Ink and Adhesion of Printed Cu Pattern on Polyimid Film (수계 Cu 나노입자 잉크에서 Poly(styrene-co-maleic acid) 접착 증진제가 잉크 레올로지와 인쇄패턴의 접착력에 미치는 영향)

  • Jo, Yejin;Seo, Yeong-Hui;Jeong, Sunho;Choi, Youngmin;Kim, Eui Duk;Oh, Seok Heon;Ryu, Beyong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.719-726
    • /
    • 2015
  • For a decade, solution-processed functional materials and various printing technologies have attracted increasingly the significant interest in realizing low-cost flexible electronics. In this study, Cu nanoparticles are synthesized via the chemical reduction of Cu ions under inert atmosphere. To prevent interparticle agglomeration and surface oxidation, oleic acid is incorporated as a surface capping molecule and hydrazine is used as a reducing agent. To endow water-compatibility, the surface of synthesized Cu nanoparticles is modified by a mixture of carboxyl-terminated anionic polyelectrolyte and polyoxylethylene oleylamine ether. For reducing the surface tension and the evaporation rate of aqueous Cu nanoparticle inks, the solvent composition of Cu nanoparticle ink is designed as DI water:2-methoxy ethanol:glycerol:ethylene glycol = 50:20:5:25 wt%. The effects of poly(styrene-co-maleic acid) as an adhesion promoter(AP) on rheology of aqueous Cu nanoparticle inks and adhesion of Cu pattern printed on polyimid films are investigated. The 40 wt% aqueous Cu nanoparticle inks with 0.5 wt% of Poly(styrene-co-maleic acid) show the "Newtonian flow" and has a low viscosity under $10mPa{\cdots}S$, which is applicable to inkjet printing. The Cu patterns with a linewidth of $50{\sim}60{\mu}m$ are successfully fabricated. With the addition of Poly(styrene-co-maleic acid), the adhesion of printed Cu patterns on polyimid films is superior to those of patterns prepared from Poly(styrene-co-maleic acid)-free inks. The resistivities of Cu films are measured to be $10{\sim}15{\mu}{\Omega}{\cdot}cm$ at annealing temperature of $300^{\circ}C$.

Relations of Nutrient Concentrations on the Seasonality of Algal Community in the Nakdong River, Korea (낙동강 조류군집의 계절적 변화와 영양염 농도와의 관계)

  • Yu, Jae Jeong;Lee, Keung Lak;Lee, Hye Jin;Hwang, Jeong Wha;Lyu, Heuy Seong;Shin, La Young;Park, A Reum;Chen, Se Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.110-119
    • /
    • 2015
  • The construction of the eight large weirs in the Nakdong River, the second largest river in Korea, caused big changes in the physical environment of the water system. Algal communities and their correlations with environmental factors, mainly nutrients were studied at five weir areas in the Nakdong River from 2010 to 2013. Water quality, hydrodynamics and algal composition were investigated. Results showed that flow velocities were reduced compared with that before weir construction near the areas where are located in the mid and upstreams of the Nakdong River. A seasonal algal community succession was observed and it was mainly correlated with temperature and phosphorus. Diatoms were dominated from winter to spring months and massive diatomic blooms of Stephanodiscus sp. occurred early in March during survey period. Cyanobacterial blooms of Microcystis sp. occurred from July to September 2013 and was preceded by the lower total phosphorus concentration of $0.05mg\;L^{-1}$. The correlations between total phosphorus concentrations and algal abundances were not significant during the survey periods. However, significant correlation with cyanobacteria was found in the period of weir construction after only at the GG survey site and blooms periods of 7 times in the survey sites, and its correlation coefficients were 0.53 (p<0.001) and 0.42 (p<0.01) respectively. When algal bloom was observed, partially low nutrient concentration was observed in the Nakdong River. In conclusion, partially low nutrient concentration which may result from algal bloom was observed, and we presume it caused the reduction of algal abundunces.

Garlic flavor (마늘 flavor)

  • Kim, Mee Ree;Ahn, Seung Yo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.2
    • /
    • pp.176-187
    • /
    • 1983
  • Volatile flavor components of garlic and factors which influence on its flavors were reviewed. Growth, storage and processing conditions influence on the flavor intensity of garlic. To intensify garlic flavors, it is desirable that sufficient sulfate nutrition be supplied to the soil of growing garlic and that the suggested proportions of mineral composition and water content be considered. And to maintain the flavor intensity of post harvested garlic, flavor losses taken place during over inter storage mainly due to respiration, sprout and decay, have to be minimized. Among the various storage methods, combination method of post harvest hot-air drying and low temperature ($0^{\circ}C$), low humidity (RH 70-75%) is useful. The flavor of processed garlic is very much decreased as compared with that of fresh, and the decreasing rate of flavors depends on processing method. The synthetic garlic flavors were obtained by three types based on intermediate thiosulfinate, S-alk(en) yl-$\small{L}$-cyteine sulfoxlde-alliinase fission products and $\small{L}$-5-alk (en)yl thiomethylhydantoin ${\pm}$ S-oxides. These synthetic garlic flavors may be promised to be applied to food additives.

  • PDF

Research Trend of Soft Magnetic Composite Materials with High Energy Efficiency (고에너지효율 연자성 복합 분말 소재의 연구개발 동향)

  • Kim, Hwi-Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.77-82
    • /
    • 2011
  • The use of soft magnetic materials have been increasing in the various industrial fields according to the increasing demand for high performance, automatic, miniaturing equipments in the recent our life. In this study, we investigated the effect of factors on the core loss and magnetic properties of electrical steel and soft magnetic composites. Furthermore, we reviewed the major efforts to reduce the core loss and improve the soft magnetic properties in the two main soft magnetic materials. Domain purification which results from reduced density of defects in cleaner electrical steels is combined with large grains to reduce hysteresis loss. The reduced thickness and the high electrical conductivity reduce the eddy current component of loss. Furthermore, the coating applied to the surface of electrical steel and texture control lead to improve high permeability and low core loss. There is an increasing interest in soft magnetic composite materials because of the demand for miniaturization of cores for power electronic applications. The SMC materials have a broad range of potential applications due to the possibility of true 3-D electromagnetic design and higher frequency operation. Grain size, sintering temperature, and the degree of porosity need to be carefully controlled in order to optimize structure-sensitive properties such as maximum permeability and low coercive force. The insulating coating on the powder particles in SMCs eliminates particle-to-particle eddy current paths hence minimizing eddy current losses, but it reduces the permeability and to a small extent the saturation magnetization. The combination of new chemical composition with optimum powder manufacturing processes will be able to result in improving the magnetic properties in soft magnetic composite materials, too.