Preparation and Properties of Low Density Polyethylene/Organo-clay Nanocomposite

저밀도 폴리에틸렌 나노복합재료의 제조 및 특성

  • Moon, Sung-Chul (Division of Chemical and Polymer Sci. & Eng., Chosun Univ.) ;
  • Jung, Hyo-Sun (Division of Chemical and Polymer Sci. & Eng., Chosun Univ.) ;
  • Lee, Jae-CHul (Division of Chemical and Polymer Sci. & Eng., Chosun Univ.) ;
  • Hong, Jin-Who (Division of Chemical and Polymer Sci. & Eng., Chosun Univ.) ;
  • Choi, Jae-Kon (Division of Chemical and Polymer Sci. & Eng., Chosun Univ.) ;
  • Jo, Byung-Wook (Division of Chemical and Polymer Sci. & Eng., Chosun Univ.)
  • 문성철 (조선대학교 공과대학 화학.고분자공학부) ;
  • 정효선 (조선대학교 공과대학 화학.고분자공학부) ;
  • 이재철 (조선대학교 공과대학 화학.고분자공학부) ;
  • 홍진후 (조선대학교 공과대학 화학.고분자공학부) ;
  • 최재곤 (조선대학교 공과대학 화학.고분자공학부) ;
  • 조병욱 (조선대학교 공과대학 화학.고분자공학부)
  • Received : 2004.07.02
  • Accepted : 2004.11.17
  • Published : 2005.02.10

Abstract

In this study, low density polyethylene/organo-clay nanocomposites were prepared by melt blending. Thermal property, structure, and morphology of the LDPE/organo-clay nanocomposites were investigated. When the composition ratios of the compounds of LDPE/PE-g-MA/organo-clay were 90/10/1~10 (w/w/w), X-ray diffractograms of LDPE/organo-clay nanocomposites revealed that the intercalation of polymer chains lead to increase the spacing between clay layers. TEM microphotographs showed that LDPE was intercalated into organo-clay. TGA performed under air atmosphere demonstrated a great increase in thermal stability of the LDPE/organo-clay nanocomposties. The maximum decomposition temperature of LDPE/organo-clay nanocomposite was increased about $80^{\circ}C$ compared with pure LDPE. When the organo-clay contents were 1.0~5.0 wt%, the LOI values were increased with increasing the organo-clay content, but in the case of the contents more than 5.0 wt%, the LOI values were not increased any more.

본 연구에서는 용융법에 의한 저밀도폴리에틸렌 나노복합재료를 제조하였으며, 구조변화, organo-clay의 분산정도, 열적 특성 및 난연 특성을 조사하였다. LDPE/PE-g-MA/organo-clay의 조성비가 90/10/1~10 (w/w/w)일 때, XRD 분석 결과 clay 층간간격이 증가함을 알 수 있었으며, TEM을 이용하여 organo-clay의 분산을 관찰하였는데, 대체적으로 organo-clay가 일정한 방향성을 가지며 잘 분산되어 있음을, 즉 삽입형(intercalation) 나노복합체가 형성되었음을 확인할 수 있었다. 또한 LDPE 나노복합재료의 분해온도가 순수한 LDPE에 비해 약 $80^{\circ}C$ 정도 상승함으로써 열적특성이 현저히 증가함을 알 수 있었고, organo-clay 5.0 wt% 범위 내에서 organo-clay의 함량이 증가함에 따라 LOI가 증가함을, 그 이상에서는 더 이상의 LOI 증가를 보이지 않음을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 산업자원부

References

  1. J. H. Lee, Y. J. Yoo, and K. Y. Cho, News & Information for Chemical Engineers, 21, 376 (2003)
  2. P. C. LeBaro, Z. Wang, and T. J. Pinnavaia, Appl. Clay Sci., 15, 11 (1999) https://doi.org/10.1016/S0169-1317(99)00017-4
  3. E. P. Giannelis, Adv. Mater., 8, 29 (1996) https://doi.org/10.1002/adma.19960080104
  4. M. B. Ko and J. K. Kim, Polym. Sci. Tech., 10, 451 (1999)
  5. R. Krishnamoorti, R. A. Vaia, and E. P. Giannelis, Chem. Mater., 8, 1728 (1996) https://doi.org/10.1021/cm960127g
  6. G. Lagaly, Solid State lonics, 22, 43 (1986)
  7. M. Zanetti and L. Costa, Polymer, 45, 4367 (2004) https://doi.org/10.1016/j.polymer.2004.04.043
  8. T. Kashiwagi, R. H. Harris Jr, X. Zhang, R. M. Briber, B. H. Cipriano, S. R. Raghavan, W. H. Awad, and J. R. Shields, Polymer, 45, 881 (2004) https://doi.org/10.1016/j.polymer.2003.11.036
  9. W. B. Xu, S. P. Bao, and P. S. He, J. Appl. Poly. Sci., 84, 842 (2002) https://doi.org/10.1002/app.10354
  10. T. D. Fornes, P. J. Yoon, D. L. Hunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002) https://doi.org/10.1016/S0032-3861(02)00400-7
  11. X. Liu and Q. Wu, Polymer, 42, 10013 (2001) https://doi.org/10.1016/S0032-3861(01)00561-4
  12. M. Alexandre, P. Dubois, T. Sun, J. M. Garces, and R. Jerome, Polymer, 43, 2123 (2002) https://doi.org/10.1016/S0032-3861(02)00036-8
  13. K. H. Wang, M. H. Choi, C. M. Koo, M. Xu, I. J. Chung, M. C. Jang, S. W. Choi, and H. H. Song, J. Polym. Sci.: Part B: Polym. Physic., 40, 1454 (2002) https://doi.org/10.1002/polb.10201
  14. T. G. Gopakumar, J. A. Lee, M. Kontopoulou, and J. S. Parent, Polymer, 43, 5483 (2002) https://doi.org/10.1016/S0032-3861(02)00403-2
  15. M. Alexandre and G. Beyer, Chem. Mater., 13, 3830 (2001) https://doi.org/10.1021/cm011095m
  16. A. Riva, M. Zanetti, M. Braglia, G. Camino, and L. Falqui, Polym. Degrad. Stab., 77, 299 (2002) https://doi.org/10.1016/S0141-3910(02)00065-4
  17. D. Porter, E. Metcalfe, and M. J. K. Thomas, Fire Mater., 24, 45 (2000) https://doi.org/10.1002/(SICI)1099-1018(200001/02)24:1<45::AID-FAM719>3.0.CO;2-S
  18. J. Zhu and C. A. Wilkie, Polym. Inter., 49, 1158 (2002) https://doi.org/10.1002/1097-0126(200010)49:10<1158::AID-PI505>3.0.CO;2-G
  19. M. Zanetti, G. Camino, D. Canavese, A. B. Morgan, F. J. Lamelas, and C. A. Wilkie, Chem. Mater., 14, 189 (2002) https://doi.org/10.1021/cm011124t
  20. Jeffrey W. Gilman, Appl. Clay Sci., 15, 31 (1999) https://doi.org/10.1016/S0169-1317(99)00019-8
  21. G. Beyer, Fire Mater., 25, 193 (2001) https://doi.org/10.1002/fam.776
  22. G. Camino, A. Maffezzoli, M. Braglia, M. D. Lazzaro, and M. Zarnmarano, Polym. Degrad. Stab., 74, 457 (2001) https://doi.org/10.1016/S0141-3910(01)00167-7
  23. S. C. Moon, J. K. Choi, and B. W. Jo, Elastomer, 38, 316 (2003)
  24. D. K. Park and J. H. Chang, Polymer(Korea), 24, 399 (2000)
  25. Y. U. An, J. H. Chang, Y. H. Park, and J. M. Park, Polymer (Korea), 26, 381 (2002)
  26. T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, J. Phys. Chem. Solids, 57, 1005 (1996) https://doi.org/10.1016/0022-3697(95)00388-6