• Title/Summary/Keyword: low temperature composition

Search Result 977, Processing Time 0.03 seconds

Effects of Dietary Supplementation of Spirulina and Astaxanthin for Juvenile Olive Flounder, Paralichthys olivaceus in Low Temperature Season (저수온기 넙치 치어에 있어서 스피룰리나와 아스타잔틴의 사료 내 첨가효과)

  • Kim Sung-Sam;Galaz German Bueno;Lee Kyeong-Jun;Lee Young-Don
    • Journal of Aquaculture
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 2006
  • This study was conducted to investigate the effects of dietary supplementation of spirulina (SPI) and asthaxanthin (AST) on growth performance and antioxidant activity in juvenile olive flounder (Paralichthys olivaceus) in low temperature season. Total 180 fish ($27.8{\pm}0.3g$, average weight ${\pm}S.D.$) were randomly divided into 12 groups, and 3 groups were fed one of four isonitrogenous (52% CP) and isocaloric $(18.3\;MJ\;kg^{-1})$ diets containing no SPI and AST, 0.5% SPI, 0.5% AST, and 0.5% each SPI and AST (designated by diets Control, SPI, AST and SPI+AST, respectively). After 6 weeks of feeding trial, the growth performance, feed utilization, whole body composition and survival of fish were not significantly affected by the experimental diets. There were no significant differences in hematocrit, hemoglobin, alanine aminotransferase and aspartate aminotransferase of fish fed all the experimental diets. The DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging assay indicated numerically increased antioxidant activity in liver of fish fed the SPI diet compared to that of fish fed the control diet, even though it was not significant. The present study shows that a low level (0.5%) of dietary supplementation of SPI and/or AST does not affect growth and feed utilization and intake of juvenile olive flounder in low temperature season.

자발적 상분리법과 수열합성법을 이용한 ZnO계 일차원 나노구조의 수직 합성법 연구

  • Jo, Hyeong-Gyun;Kim, Dong-Chan;Bae, Yeong-Suk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.5.2-5.2
    • /
    • 2009
  • From 10 years ago, the development of nano-devices endeavored to achieve reconstruction of information technology (IT) and nano technology (NT) industry. Among the many materials for the IT and NT industry, zinc oxide (ZnO) is a very promising candidate material for the research of nano-device development. Nano-structures of ZnO-based materials were grown easily via various methods and it attracts huge attention because of their superior electrical and optical properties for optoelectronic devices. Recently, among the various growth methods, MOCVD has attracted considerable attention because it is suitable process with benefits such as large area growth, vertical alignment, and accurate doping for nano-device fabrication. However, ZnO based nanowires grown by MOCVD process were had the principal problems of 1st interfacial layers between substrate and nanowire, 2nd a broad diameter (about 100 nm), and 3rd high density, and 4th critical evaporation temperature of Zinc precursors. In particular, the growth of high performance nanowire for high efficiency nano-devices must be formed at high temperature growth, but zinc precursors were evaporated at high temperature.These problems should be repaired for materialization of ultra high performance quantum devices with quantum effect. For this reason, we firstly proposed the growth method of vertical aligned slim MgZnO nanowires (< 10 nm) without interfacial layers using self-phase separation by introduced Mg at critical evaporation temperature of Zinc precursors ($500^{\circ}C$). Here, the self-phase separation was reported that MgO-rich and the ZnO-rich phases were spontaneously formed by additionally introduced Mg precursors. In the growth of nanowires, the nanowires were only grown on the wurzite single crystal seeds as ZnO-rich phases with relatively low Mg composition (~36 at %). In this study, we investigated the microstructural behaviors of self-phase separation with increasing the Mg fluxes in the growth of MZO NWs, in order to secure drastic control engineering of density,diameter, and shape of nanowires.

  • PDF

Production of Fungal Lipid (Part IV) Effect of Cultural Conditions on the Growth and Lipid Accumulation of Mucor plumbeus (곰팡이 유지 생산에 관한 연구 (제 4 보) 배양조건이 Mucor Plumbeus의 유지 생산에 미치는 영향에 대하여)

  • 유진영;이형춘;신동화;서기봉
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.2
    • /
    • pp.87-93
    • /
    • 1982
  • The cultural conditions of Mucor plumbeus FRI 0007 were investigated for the maximum production of felt and lipid. It was found that the lower the pH and the higher the incubation temperature, the higher accumulation of the felt and lipid. Shake culture rendered higher lipid accumulation and lower felt accumulation than static culture. Maximum production of felt and lipid content were 47.8 g/$\ell$ and 50.73%, respectively, when the organisms were static-cultured at a temperature of 37$^{\circ}C$ and pH of 3.5 for 25 days latroscan thinchrographic analysis showed that the higher amount of triglyceride was obtained when static-cultured at a low pH. Fatty acid composition of the microbial lipid was affected by the incubation temperature, types of nitrogen source and speed of agitation: lower degree of saturation was observed as the incubation temperature decreased and the speed of agitation increased. Fatty acids of monoglyceride and diglyceride were mainly palmitic and oleic acids and those of triglycerides were mainly palmitic, oleic acids.

  • PDF

A Study on the Corrosion Properties and Microstructure of the Nitrocarburized and Oxidized Low Carbon Steel according to the Treatment Atmospheres (저탄소강의 질화침탄과 산화처리시 분위기 변화에 따른 조직 및 부식특성에 관한 연구)

  • Shin, P.W.;Lee, K.H.;Nam, K.S.;Park, Y.M.;Jo, H.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.87-93
    • /
    • 2004
  • Nitrocarburizing was carried out with various $CH_4$ gas composition with 4 torr gas pressure at $570^{\circ}C$ for 3 hours and post oxidation was carried out with 100% $O_2$ gas atmosphere with 4 torr at different temperatures for various time. In the case of plasma nitrocarburizing, It is that the ratio of ${\varepsilon}-Fe_{2-3}$(N, C) and ${\gamma}^{\prime}-Fe_4$(C, N), which comprise the compound layer phase, depend on concentrations of $N_2$ gas and $CH_4$ such that when the concentration of $N_2$ and $CH_4$ increased, the ratio of ${\gamma}^{\prime}-Fe_4$(C, N) decreased, but the ratio of ${\varepsilon}-Fe_{2-3}$(N, C) increased. The thickness of compound layer consistently increased as gas concentration increased regardless of $N_2$ and $CH_4$ expect when the concentration of $CH_4$ was 3.5 volume%, it decreased insignificantly. When oxidizing for 15min in the temperature range of $460{\sim}570{^\circ}C$, the study found small amount of $Fe_3O_4$ at the temperature of $460{^\circ}C$ and also found that amounts of $Fe_2O_3$. and $Fe_3O_4$ on the surface and amount of ${\gamma}^{\prime}-Fe_4$(C, N) in the compound layer increased as the increased over $460^{\circ}C$, but the thickness of the compound layer decreased. Corrosion resistance was influenced by oxidation times and temperature.

Chemical Vapor Deposition of Tungsten by Silane Reduction (사일린 환원반응에 의한 텅스텐 박막의 화학증착)

  • Hwang, Sung-Bo;Choi, Kyeong-Keun;Rhee Shi-Woo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.113-123
    • /
    • 1990
  • Tungsten film was deposited on the single crystal silicon wafer in a low pressure chemical vapor deposition reactor from silane and tungsten hexafluoride in the temperature range of $250-400^{\circ}C$ Deposition rate was found to be determined by the mass transfer rate of reactants from the gas phase to the safter surface. It was found out that tungsten films deposited contained about 3 atomic $\%$ of silicon and that the crystallinity and the grain size increased as the deposition temperature was increased. The resistivity of the film was measured to be in the range of $7~25{\mu}{\Omega}-cm$ and decreased with increasing deposition temperature. The adhesion of the tungsten film on a silicon surface was measured by the tape peel off test and it was improved with increasing deposition temperature. From the analysis of the gas composition, the reaction pathway to form $SiF_{4}$ and $H_{2}$ was found to be more favorable than HF formation.

  • PDF

Thermodynamic Prediction of SiC Deposition in C3H8-SiCl4-H2 System (C3H8-SiCl4-H2 시스템에서의 탄화 실리콘 증착에 대한 열역학적인 해석)

  • Kim, Jun-Woo;Jeong, Seong-Min;Kim, Hyung-Tae;Kim, Kyung-Ja;Lee, Jong-Heun;Choi, Kyoon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.236-240
    • /
    • 2011
  • In order to deposit a homogeneous and uniform ${\beta}$-SiC films by chemical vapor deposition, we demonstrated the phase stability of ${\beta}$-SiC over graphite and silicon via computational thermodynamic calculation considering pressure, temperature and gas composition as variables. The ${\beta}$-SiC predominant region over other solid phases like carbon and silicon was changed gradually and consistently with temperature and pressure. Practically these maps provide necessary conditions for homogeneous ${\beta}$-SiC deposition of single phase. With the thermodynamic analyses, the CVD apparatus for uniform coating was modeled and simulated with computational fluid dynamics to obtain temperature and flow distribution in the CVD chamber. It gave an inspiration for the uniform temperature distribution and low local flow velocity over the deposition chamber. These calculation and model simulation could provide milestones for improving the thickness uniformity and phase homogeneity.

Diffusion of the High Melting Temperature Element from the Molten Oxides for Copper Alloys (구리 합금을 위한 초고융점 원소의 용융산화물 확산 공정)

  • Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.130-135
    • /
    • 2016
  • To alloy high melting point elements such as boron, ruthenium, and iridium with copper, heat treatment was performed using metal oxides of $B_2O_3$, $RuO_2$, and $IrO_2$ at the temperature of $1200^{\circ}C$ in vacuum for 30 minutes. The microstructure analysis of the alloyed sample was confirmed using an optical microscope and FE-SEM. Hardness and trace element analyses were performed using Vickers hardness and WD-XRF, respectively. Diffusion profile analysis was performed using D-SIMS. From the microstructure analysis results, crystal grains were found to have formed with sizes of 2.97 mm. For the copper alloys formed using metal oxides of $B_2O_3$, $RuO_2$, and $IrO_2$ the sizes of the crystal grains were 1.24, 1.77, and 2.23 mm, respectively, while these sizes were smaller than pure copper. From the Vickers hardness results, the hardness of the Ir-copper alloy was found to have increased by a maximum of 2.2 times compared to pure copper. From the trace element analysis, the copper alloy was fabricated with the expected composition. From the diffusion profile analysis results, it can be seen that 0.059 wt%, 0.030 wt%, and 0.114 wt% of B, Ru, and Ir, respectively, were alloyed in the copper, and it led to change the hardness. Therefore, we verified that alloying of high melting point elements is possible at the low temperature of $1200^{\circ}C$.

Enhancement of Lowsintering Temperature and Electromagnetic Properties of (NiCuZn)-Ferrites for Multilayer Chip Inductor by Using Ultra-fine Powders (초미세 분말합성에 의한 칩인덕터용 (NiCuZn)-Ferrites의 저온소결 및 전자기적 특성 향상)

  • 허은광;강영조;김정식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2002
  • In this study, two different (NiCuZn)-ferrite which were fabricated by using ultra-fine powders synthesized by the wet processing and conventionally commercialized powder, were investigated and compared each other in terms of the low temperature sintering and electromagnetic properties. Composition of x and w in $(Ni_{0.4-x}Cu_xZn_{0.6})_{1+w}(Fe_2O_4)_{1-w}$ were controlled as 0.2 and 0.03, respectively. The sintering temperature were $900^{\circ}C$ for ultra-fine powders by way of initial heat treatment and $1150^{\circ}C$ for commercialized powders. The (NiCuZn)-ferrite by ultra-fine powders showed love. sintering temperature than that of commercialized powders by over $200^{\circ}C$, and excellent electromagnetic properties such as the quality factor which is a important factor in the multi-layered chip inductor. In addition, characteristics of B-H hysteresis, crystallinity, microstructure and powder morphology were analyzed by a vibrating sample method(VSM), x-ray diffractometer(XRD), transmission electron microscope (TEM) and scanning electron microscope(SEM).

  • PDF

Preparation Nanosized TPA-Silicalite-1 with Different Silica Sources and Promoters (다양한 실리카 원과 결정화 촉진제를 이용한 나노크기의 TPA-Silicalite-1 제조)

  • Jung, Sang-Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.286-291
    • /
    • 2014
  • In this study, nanosized TPA-silicalite-1 was synthesized with a suitable molar composition of TPAOH: $SiO_2$: $H_2O$ for the development of zeolite ceramic membranes to utilize as gas separation. As silica sources, TEOS, LUDOX AS-40 and CAB-O-SIL were used with the starting material of TPAOH. $NaH_2PO_4$, and a variety of acids and bases were used as promoters after TPAOH, $SiO_2$, $H_2O$ gel synthesis. To decrease synthesis time, a two step temperature change method was applied to the synthesis of TPA-silicalite-1 at a low temperature. TPA-silicalite-1 synthesized was analyzed with XRD, SEM, BET and TGA. As a result, TPA-silicalite-1 powders with a particle size of 100 nm and a specific surface area of $416m^2/g$ were obtained as optimum synthesis conditions when the two stage temperature change method was used with $NaH_2PO_4$ as promoter.

Development and Evaluation of Non-Hydrous Skin Analogue Liquid Crystal using Thermo-Sensitivity Smart Sensor

  • Yoo, Kwang-Ho;Hong, Jae-Hwa;Eun, So-Hee;Jeong, Tae-Hwa;Jeong, Kwan-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.367-374
    • /
    • 2014
  • In this study, skin permeation enhancement was confirmed by designing it to have a structure and composition similarity to the intercellular lipids that improve miscibility with skin by cross-linked lipids poloxamer. The cross-linked lipids poloxamer was synthesized and analyzed by 1H NMR that structure dose had conjugated pluronic with ceramide3. Active component is released by modification of liquid crystal structure because PPO part, large-scale molecule block of pluronic, has hydrophobic nature at skin temperature of $35^{\circ}C$. Conjugated pluronic with ceramide3 was synthesized using Pluronic F127 and p-NPC (4-nitrophenyl chloroformate) at room temperature yielded 89%. Pluronic(Ceramide 3-conjugated Pluronic) was synthesized by reaction of p-NP-Pluronic with Ceramide3 and DMAP. The yield was 51%. This cross-linked lipids poloxamer was blended and dissolved at isotropic state with skin surface lipids, phospholipid, ceramide, cholesterol and anhydrous additive solvent. Next step was preceded by ${\alpha}$-Transition at low temperature for making the structure of Meso-Phase Lamella, and non-hydrous skin analogue liquid crystal using thermo-sensitivity smart sensor, lamellar liquid crystal structure through aging time. For confirmation of conjugation thermo-sensitivity smart sensor and non-hydrous skin analogue liquid crystal, structural observation and stability test were performed using XRD(Xray Diffraction), DSC(Differential Scanning Calorimetry), PM (Polarized Microscope) And C-SEM (Cryo-Scanning Electron Microscope). Thermo-sensitivity observation by Franz cell revealed that synthesized smart sensor shown skin permeation effect over 75% than normal liquid crystal. Furthermore, normal non-hydrous skin analogue liquid crystal that not applied smart sensor shown similar results below $35^{\circ}C$ of skin temperature, but its effects has increased more than 30% above $35^{\circ}C$.