• 제목/요약/키워드: low temperature composition

검색결과 974건 처리시간 0.032초

Fabrication and characterization of ternary compound ZnCdS nanowires

  • Lee, Dong-Jin;Son, Moon-A;Kang, Tae-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.57-57
    • /
    • 2010
  • Self assembled $Zn_{x-1}Cd_xS$ nanowires, synthesized on a Indium tin oxide coated glass substrate with low composition of Cd as x=0.09, were fabricated non-precursor via a co-evaporation method using of solid sources of CdS and ZnS. We studies that ZnCdS nanowires are dislocation-free and the single crystalline hexagonal wurtzite structure showed by transmission electron microscopy and selected area electron diffraction pattern. Cathode luminescence spectra showed an near band edge peak at 383nm originated from nanowires at 80K and 300K. Core level spectra of the Cd 3d, Zn 2p and S 2p in the ZnCdS nanorods were obtained by x-ray photoelectron spectroscopy. Prepared ZnCdS nanorods showed different shape with increase of substrate temperature at the growth.

  • PDF

숙박업소 건물의 히트펌프 냉난방 시스템 적용을 위한 시뮬레이션 연구 (Study on the Simulation of Heat Pump Heating and Cooling Systems to Resident Building)

  • 최영돈;한성호;조성환;김주성;엄철준
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.915-920
    • /
    • 2006
  • Recently available heat pump system by using air heat-source is not efficient. Because the mean temperature of korean winter season is low, economy of air heat-source heat pump descend, and COP is below 3.0. This paper was practiced the simulation on evaluation criteria for heat pump heating and cooling systems to resident building. As a result, heating and cooling composition heat pump system apply to the building needed to be provided heat source for 24 hours.

  • PDF

이차전지 리드 탭 테이프용 폴리프로필렌 기반 기능성 폴리올레핀에 관한 연구 (A Study on PolyPropylene-base Functionalized Polyolefin for Secondary Battery Lead Tab Tape)

  • 김덕호
    • 한국산업융합학회 논문집
    • /
    • 제27권3호
    • /
    • pp.619-627
    • /
    • 2024
  • By analyzing the structure of the currently used Lead Tab tape structure, the outermost layer, low-temperature fusion functionalized olefin, was composed of pp base. To determine whether this could be used as the outermost layer of tab tape, the adhesive strength to metal foils such as copper and aluminum was measured and the adhesive strength was compared with commercially available functionalized olefin. When chlorine was grafted onto PP among the PP used in the composition, the average adhesive strength was similar to that of commercially available LT200T and superior to RE140R and LE320V. The maximum adhesive strength exceeded that of LE200T. When it comes to solvents, xylene has been shown to be better than any other. Physical methods such as substitution of other monomers, switching of additives or let-down hardly changed the adhesion of grafted PP, and the selection of PP is an important factor in preparing functional polymers.

Structural and Electrical Features of Solution-Processed Li-doped ZnO Thin Film Transistor Post-Treated by Ambient Conditions

  • Kang, Tae-Sung;Koo, Jay-Hyun;Kim, Tae-Yoon;Hong, Jin-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.242-242
    • /
    • 2012
  • Transparent oxide semiconductors are increasingly becoming one of good candidates for high efficient channel materials of thin film transistors (TFTs) in large-area display industries. Compare to the conventional hydrogenated amorphous silicon channel layers, solution processed ZnO-TFTs can be simply fabricated at low temperature by just using a spin coating method without vacuum deposition, thus providing low manufacturing cost. Furthermore, solution based oxide TFT exhibits excellent transparency and enables to apply flexible devices. For this reason, this process has been attracting much attention as one fabrication method for oxide channel layer in thin-film transistors (TFTs). But, poor electrical characteristic of these solution based oxide materials still remains one of issuable problems due to oxygen vacancy formed by breaking weak chemical bonds during fabrication. These electrical properties are expected due to the generation of a large number of conducting carriers, resulting in huge electron scattering effect. Therefore, we study a novel technique to effectively improve the electron mobility by applying environmental annealing treatments with various gases to the solution based Li-doped ZnO TFTs. This technique was systematically designed to vary a different lithium ratio in order to confirm the electrical tendency of Li-doped ZnO TFTs. The observations of Scanning Electron Microscopy, Atomic Force Microscopy, and X-ray Photoelectron Spectroscopy were performed to investigate structural properties and elemental composition of our samples. In addition, I-V characteristics were carried out by using Keithley 4,200-Semiconductor Characterization System (4,200-SCS) with 4-probe system.

  • PDF

Optical and electrical property of Indium-doped ZnO (IZO) grown by Atomic Layer Deposition (ALD) using Et2InN(TMS)2 as In precursor and H2O oxidant

  • 조영준;장효식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.421.1-421.1
    • /
    • 2016
  • We studied indium-doped zinc oxide (IZO) film grown by atomic layer deposition (ALD) as transparent conductive oxide (TCO). A variety of TCO layer, such as ZnO:Al (AZO), InSnO2(ITO), Zn (O,S) etc, has been grown by various method, such as ALD, chemical vapor deposition (CVD), sputtering, laser ablation, sol-gel technique, etc. Among many deposition methods, ALD has various advantages such as uniformity of film thickness, film composition, conformality, and low temperature deposition, as compared with other techniques. In this study, we deposited indium-doped zinc oxide thin films using diethyl[bis(trimethylsilyl)amido]indium [Et2InN(TMS)2] as indium precursor, DEZn as zinc precursor and H2O as oxidant for ALD and investigated the optical and electrical properties of IZO films. As an alternative, this liquid In precursor would has several advantages in indium oxide thin-film processes by ALD, especially for low resistance indium oxide thin film and high deposition rate as compared to InCp, InCl3, TMIn precursors etc. We found out that Indium oxide films grown by Et2InN(TMS)2 and H2O precursor show ALD growth mode and ALD growth window. We also found out the different growth rate of Indium oxide as the substrate and investigated the effect of the substrate on Indium oxide growth.

  • PDF

발효쪽 분말염료로 염색한 견직물의 색소 함량이 직물의 색상에 미치는 영향 (Effect of the Amount of Pigment on the Color of Silk Dyed with Fermented Indigo Powder Dye)

  • 유완송;안춘순
    • 한국의류학회지
    • /
    • 제42권2호
    • /
    • pp.342-359
    • /
    • 2018
  • This research investigated the relationship between the amount of fixed pigment and the color of silk dyed with three types of fermented indigo powder dye under different temperatures and pH, by reduction or nonreduction method. Amount of fixed pigment was analyzed using the Ultimate 3000 HPLC-DAD instrument and the color of dyed silk was measured using the X-rite spectrocolorimeter. All silk samples dyed by reduction method showed PB color. The amount of indigotin fixation was dependent on the dyeing temperature and pH regardless of the indigotin composition in the dye. Indirubin was less dependent upon the dyeing condition in the reduction dyeing and its fixation was minimum level. Dyeing conditions which can maximize the indigotin fixation were $50^{\circ}C/pH$ 11 and $70^{\circ}C/pH$ 7 conditions in reduction dyeing. Color of silk showed more redness ($a^*$) thus higher PB color when the indigotin fixation was low and indirubin fixation was relatively high. Indirubin fixation was very low with slightly better fixation by nonreduction method. More reddish color was obtained by nonreduction dyeing, and by more alkaline dyebath.

Direct Printing and Patterning of Highly Uniform Graphene Nanosheets for Applications in Flexible Electronics

  • 구자훈;이태윤
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • With the steady increase in the demand for flexible devices, mainly in display panels, researchers have focused on finding a novel material that have excellent electrical properties even when it is bended or stretched, along with superior mechanical and thermal properties. Graphene, a single-layered two-dimensional carbon lattice, has recently attracted tremendous research interest in this respect. However, the limitations in the growing method of graphene, mainly chemical vapor deposition on transition metal catalysts, has posed severe problems in terms of device integration, due to the laborious transfer process that may damage and contaminate the graphene layer. In addition, to lower the overall cost, a fabrication technique that supports low temperature and low vacuum is required, which is the main reason why solution-based process for graphene layer deposition has become the hot issue. Nonetheless, a direct deposition method of large area, few-layered, and uniform graphene layers has not been reported yet, along with a convenient method of patterning them. Here, we report an evaporation-induced technique for directly depositing few layers of graphene nanosheets with excellent uniformity and thickness controllability on any substrate. The printed graphene nanosheets can be patterned into desired shapes and structures, which can be directly applicable as flexible and transparent electrode. To illustrate such potential, the transport properties and resistivity of the deposited graphene layers have been investigated according to their thickness. The induced internal flow of the graphene solution during tis evaporation allows uniform deposition with which its thickness, and thus resistivity can be tuned by controlling the composition ratio of the solute and solvent.

  • PDF

Effects of Sputtering Pressure on the Properties of BaTiO3 Films for High Energy Density Capacitors

  • Park, Sangshik
    • 한국재료학회지
    • /
    • 제24권4호
    • /
    • pp.207-213
    • /
    • 2014
  • Flexible $BaTiO_3$ films as dielectric materials for high energy density capacitors were deposited on polyethylene terephthalate (PET) substrates by r.f. magnetron sputtering. The growth behavior, microstructure and electrical properties of the flexible $BaTiO_3$ films were dependent on the sputtering pressure during sputtering. The RMS roughness and crystallite size of the $BaTiO_3$ increased with increasing sputtering pressure. All $BaTiO_3$ films had an amorphous structure, regardless of the sputtering pressures, due to the low PET substrate temperature. The composition of films showed an atomic ratio (Ba:Ti:O) of 0.9:1.1:3. The electrical properties of the $BaTiO_3$ films were affected by the microstructure and roughness. The $BaTiO_3$ films prepared at 100 mTorr exhibited a dielectric constant of ~80 at 1 kHz and a leakage current of $10^{-8}A$ at 400 kV/cm. Also, films showed polarization of $8{\mu}C/cm^2$ at 100 kV/cm and remnant polarization ($P_r$) of $2{\mu}C/cm^2$. This suggests that sputter deposited flexible $BaTiO_3$ films are a promising dielectric that can be used in high energy density capacitors owing to their high dielectric constant, low leakage current and stable preparation by sputtering.

터보펌프 시동기용 추진제 개발 (Development of Propellant for Turbopump Pyro Starter)

  • 송종권;최성한;홍문근;이수용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.7-10
    • /
    • 2009
  • 우주발사체용 액체추진제 로켓엔진을 시동할 때 사용되는 터보펌프 시동기에 적용하고자 고체추진제 개발 및 특성 평가를 수행하였다. 터보펌프 시동기용 추진제의 배출가스는 기계적인 부식 또는 대기오염 등의 이유로 화염온도가 낮아야 하고 고체입자 잔사 및 독성이 적은 것이 바람직하며, 작동시간이 어느 정도 유지가 되어야 하기 때문에 비교적 낮은 연소속도가 필요하다. 본 연구에서는 PCP계열의 바인더를 사용하고 oxygen balance나 점화성에서 유리한 DHG(Dihydroxy glyoxime)을 냉각제를 사용하는 추진제 조성을 개발하여 연소속도와 기계적 물성 등의 특성평가를 실시하였으며, 최종적으로는 지상연소시험을 통하여 터보펌프 시동기의 성공적인 개발 가능성을 입증하였다.

  • PDF

이리듐 첨가에 의한 니켈모노실리사이드의 고온 안정화 (Thermal Stability Enhancement of Nickel Monosilicides by Addition of Iridium)

  • 윤기정;송오성
    • 한국재료학회지
    • /
    • 제16권9호
    • /
    • pp.571-577
    • /
    • 2006
  • We fabricated thermal evaporated 10 nm-Ni/(poly)Si and 10 nm-Ni/1 nm-Ir/(poly)Si films to investigate the thermal stability of nickel monosilicide at the elevated temperatures by rapid annealing them at the temperatures of $300{\sim}1200^{\circ}C$ for 40 seconds. Silicides for salicide process was formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester is used for sheet resistance. Scanning electron microscope and field ion beam were employed for thickness and microstructure evolution characterization. An x-ray diffractometer and an auger depth profile scope were used for phase and composition analysis, respectively. Nickel silicides with iridium on single crystal silicon actives and polycrystalline silicon gates showed low resistance up to $1200^{\circ}C$ and $800^{\circ}C$, respectively, while the conventional nickel monosilicide showed low resistance below $700^{\circ}C$. The grain boundary diffusion and agglomeration of silicides led to lower the NiSi stable temperature with polycrystalline silicon substrates. Our result implies that our newly proposed Ir added NiSi process may widen the thermal process window for nano CMOS process.