• Title/Summary/Keyword: low temperature composition

Search Result 974, Processing Time 0.031 seconds

Effect of Food-Garbage Compost on the Characteristics and Storage of Persimmon Fruits (음식물 쓰레기를 이용한 퇴비가 감과육의 특성 및 저장성에 미치는 영향)

  • Cho Young-Je;Chun Sung-Sook;Cha Won-Seup;Park Joon-Hee;Oh Sang-Lyong;Lee Won-Young;Kim Jeung-Hoan;Park Jae-Gyeong
    • Food Science and Preservation
    • /
    • v.12 no.3
    • /
    • pp.199-203
    • /
    • 2005
  • Reducing sugar content of persimmon fruits was increased by applying food-garbage compost Dungsi was brighter with yellow color than that of control. The Gabjubaekmok was darker than that of control with red color. It was suggested that taste of astringent was reduced because total phenol and soluble tannin contents were reduced by applying food-garbage compost. The vitamin C content of persimmon fruits during storage was higher than that of control. Stability of persimmon fruits by applying food-garbage compost and non-food garbage compost was about the same at room temperature. At low temperature, hardness of persimmon fruits was maintained for 20 days. Hardness and reducing sugar contents of persimmon fruits were increased by applying food-garbage compost. The result was shown that there was no effect on composition of persimmon fruits by applying food-garbage compost and maintaining hardness at room temperature, but at low temperature, the composition of persimmon fruits was changed.

Selection of Optimum Species of Tetraselmis for Mass Culture (대량배양에 적합한 Tetraselmis종의 선택)

  • 김철원;허성범
    • Journal of Aquaculture
    • /
    • v.11 no.2
    • /
    • pp.231-240
    • /
    • 1998
  • Tetraselmis is widely used as a live food because of its easy handling, high nutrient, large size and wide tolerant range of temperature and salinity. In order to find the optimum Tetraselmis species for mass culture in Korea, five species of this microalgae were examined on size, optimum culture condition ${\textperthousand}$s, $^{\circ}C.$) and nutrient composition. The results obtained were as follows: Among five species of Tetraselmis, T. sp.(Haeundae) was the largest(major axis $17.6{\pm}1.87^{\mu}$m, mean cell volume 727${\mu}$m), and T. sp. (China) the smallest (major axis $14.6{\pm}1.46^{\mu}$m, mean cell volume 625m). Tetraselmis was very eurythermal and euryhaline species. But optimum temperature and salinity for growth were 24~$30^{\circ}C.$ and 27~30${\textperthousand}$, respectively. Among five species of Tetraselmis, T. sp. (China) seemed to be the most tolerant of high temperature over $30^{\circ}C.$, and T. tetrathele of low temperature below $6^{\circ}C.$. In culture density, T. suecica showed the highest growth rate among the among the five species. The cell density of this microalgae attained to $141{\times}10^4$cells/ml at $24^{\circ}C.$ and 30${\textperthousand}$ within 7 days. In chemical composition, crude protein amount was the highest in T. suecica (44.50%), and crude lipid amount it T. sp. (Haeundae, 7.13%). Total essential amino acid amount was the highest in T. sp. (Haeundae, 50.4%) and total polyunsaturated amount in T. sp. (China, 11.7%) The results on growth and chemical composition of five species of Tetraselmis indicated that T. suecica seemed to be the most suitable species for mass culture in Korea.

  • PDF

Property of Nickel Silicides with 10 nm-thick Ni/Amorphous Silicon Layers using Low Temperature Process (10 nm-Ni 층과 비정질 실리콘층으로 제조된 저온공정 나노급 니켈실리사이드의 물성 변화)

  • Choi, Youngyoun;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.322-329
    • /
    • 2009
  • 60 nm- and 20 nm-thick hydrogenated amorphous silicon (a-Si:H) layers were deposited on 200 nm $SiO_2/Si$ substrates using ICP-CVD (inductively coupled plasma chemical vapor deposition). A 10 nm-Ni layer was then deposited by e-beam evaporation. Finally, 10 nm-Ni/60 nm a-Si:H/200 nm-$SiO_2/Si$ and 10 nm-Ni/20 nm a-Si:H/200 nm-$SiO_2/Si$ structures were prepared. The samples were annealed by rapid thermal annealing for 40 seconds at $200{\sim}500^{\circ}C$ to produce $NiSi_x$. The resulting changes in sheet resistance, microstructure, phase, chemical composition and surface roughness were examined. The nickel silicide on a 60 nm a-Si:H substrate showed a low sheet resistance at T (temperatures) >$450^{\circ}C$. The nickel silicide on the 20 nm a-Si:H substrate showed a low sheet resistance at T > $300^{\circ}C$. HRXRD analysis revealed a phase transformation of the nickel silicide on a 60 nm a-Si:H substrate (${\delta}-Ni_2Si{\rightarrow}{\zeta}-Ni_2Si{\rightarrow}(NiSi+{\zeta}-Ni_2Si)$) at annealing temperatures of $300^{\circ}C{\rightarrow}400^{\circ}C{\rightarrow}500^{\circ}C$. The nickel silicide on the 20 nm a-Si:H substrate had a composition of ${\delta}-Ni_2Si$ with no secondary phases. Through FE-SEM and TEM analysis, the nickel silicide layer on the 60 nm a-Si:H substrate showed a 60 nm-thick silicide layer with a columnar shape, which contained both residual a-Si:H and $Ni_2Si$ layers, regardless of annealing temperatures. The nickel silicide on the 20 nm a-Si:H substrate had a uniform thickness of 40 nm with a columnar shape and no residual silicon. SPM analysis shows that the surface roughness was < 1.8 nm regardless of the a-Si:H-thickness. It was confirmed that the low temperature silicide process using a 20 nm a-Si:H substrate is more suitable for thin film transistor (TFT) active layer applications.

The impact of short-term acute heat stress on the rumen microbiome of Hanwoo steers

  • Baek, Youl Chang;Choi, Hyuck;Jeong, Jinyoung;Lee, Sung Dae;Kim, Min Ji;Lee, Seul;Ji, Sang Yun;Kim, Minseok
    • Journal of Animal Science and Technology
    • /
    • v.62 no.2
    • /
    • pp.208-217
    • /
    • 2020
  • Heat stress negatively affects cattle productivity by reducing feed intake. In the present study, we assessed if the rumen microbiome composition of Hanwoo steers was altered by exposure to heat stress. Rumen samples were collected from four Hanwoo steers that were individually housed in climate-controlled chambers with 60% humidity and environmental temperatures of: 1) 15℃ (0-day group), 2) 35℃ for 3 days (3-day group), and 3) 35℃ for 6 days (6-day group). The total community DNA of samples was extracted, and 997,843 bacterial and 1,508,770 archaeal sequences were analyzed using next-generation sequencing. Assessment of the relative abundances revealed 15 major phyla of which Bacteroidetes was found to be the most dominant. After 3 days of heat stress exposure there were no significant changes in the rumen microbiome composition, except for a decrease in the Planctomycetes. However, after 6 days of heat stress exposure, we found that the relative abundance of fibrolytic Ruminococcaceae had decreased while that of lactate-producing Lactobacillaceae and amylolytic Prevotella and Ruminobacter had increased. The normal rumen microbiome of Hanwoo cattle was shown to be disrupted after 6 days of heat stress, which led to the decrease in fibrolytic bacteria that are sensitive to low pH and the increase in both lactate-producing and amylolytic bacteria. We have demonstrated that the microbiome composition of the rumen is affected by acute heat stress. Our findings may contribute to the development of different feeding strategies to restore heat stress-induced disruption of the rumen microbiome.

Relationship between Fatty Acid Composition of Phospholipid from Leaves and Cold Tolerance of Rice Plants (벼의 내냉성과 잎조직인지질의 지방산 조성과의 상관관계)

  • Jung, Jin;Kim, Young-Kee;Park, Sang-Gyu
    • Applied Biological Chemistry
    • /
    • v.26 no.1
    • /
    • pp.58-64
    • /
    • 1983
  • The fatty acid composition of phospholipid from the leaves of rice plants grown at $28^{\circ}C$ and harvested at the 3-4 leaf stage was determined for 8 cultivars. Change among cultivars observed in the composition has been found to be correlative to the chilling susceptivity of the plants at the given leaf-stage. The chilling-resistant cultivars contain phospholipid with higher degree of unsaturation and larger relative proportion of unsaturated fatty acids than the chilling-sensitive ones. The indices for unsaturation of phospholipid from a cultic-ar are well in accordance with its resistance to cold damage. clearly demonstrating that the fluidity of biomembrane which is generally regarded as the prerequisite for a cell to maintain its membrane-related physiological activity at a low temperature is exclusively controlled by the fatty acid composition of phospholipid. Also identified were the components of phospholipid, which are phosphatidyl serine and phosphatidyl coline as major components and phosphatidyl inositol as minor component plus 3 phospholipids in trace proportion, from every cultivar at the early growth-stage.

  • PDF

Comparative analysis of amino acid content of Lentinula edodes, a new variety of shiitake mushroom, in 'Poongnyunko' (표고 신품종 '풍년고'의 아미노산 함량 분석)

  • Park, Young-Ae;Bak, Won-Chull;Ka, Kang-Hyeon;Koo, Chang-Duck
    • Journal of Mushroom
    • /
    • v.15 no.1
    • /
    • pp.31-37
    • /
    • 2017
  • In this study, we investigated the amino acids content of shiitake mushrooms grown in eight different media and under three different temperature conditions. The sawdust media were supplemented with 4 kinds of nutrients - rice bran, barley, bean curd refuse, and red ginseng refuse in an 8:2 ratio with or without 0.5% calcium chloride, and the fruiting temperature was set to low ($13-15^{\circ}C$), medium ($18-20^{\circ}C$), or high temperatures ($24-26^{\circ}C$). Seventeen amino acids were detected, and the content varied depending on the compositions of the media. The highest total amino acid content (209.7 mg/g) was measured in mushrooms from the media with red ginseng refuse, and the glutamic acid content was the highest (51.3 mg/g) in mushrooms from the media with barley. In terms of fruiting temperature, the amino acid content was the highest (38.2%) at medium temperature followed by the content at low (32.5%) and high temperature (29.3%). The amino acid composition of shiitake mushrooms was similar between the medium and low temperature conditions.

Effect of lead-free frit and RuO2 on the electrical properties of thick film NTC thermistors for low temperature co-firing (저온 동시 소성용 후막 NTC 서미스터의 전기적 특성에 미치는 무연계 프릿트 및 RuO2의 영향)

  • Koo, Bon Keup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.5
    • /
    • pp.218-227
    • /
    • 2021
  • A thick film NTC thermistor for low temperature co-firing was manufactured by printing and sintering a paste prepared using NTC powder of Mn1.5Ni0.4Co0.9Cu0.4O4 composition, lead free frit, and RuO2 on a 96 % alumina substrate. The effect of frit and RuO2 on the electrical properties of thick film NTC thermistor was studied. The resistance of the thick film NTC thermistor was higher than that of the bulk phase sintered at the same temperature, but it was found that the negative resistance temperature characteristic appeared more clearly and linearly in the resistance - temperature characteristic. On the other hand, the area resistance decreased as the sintering temperature increased, and the area resistance increased as the amount of frit added increased. The B constant of the thick film NTC thermistor was 3000 K or higher. Among them, it was found that the B constant of the thick film NTC thermistor made of paste with 5 wt% of frit added and sintered at 900℃ showed the highest B constant. Also, it can be seen that the area resistance decreased with the addition of RuO2, and the change in the area resistance decrease of the thick film NTC thermistor obtained by sintering the paste containing 5 wt% of RuO2 at 900℃ is the most obvious.

Optimal Enrichment Temperature, Time and Materials for L-type Rotifer (Brachionus plicatilis) Cultured at a Low Temperature (저온 배양한 L-type 로티퍼(Brachionus plicatilis)의 적정 영양강화 수온, 시간 및 영양강화제 종류)

  • Yoo, Hae-Kyun;Byun, Soon-Gyu;Choi, Jin;Nam, Myeong-Mo;Moon Lee, Haeyoung;Kang, Hee Wong;Lee, Chu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.500-507
    • /
    • 2016
  • This study was undertaken to improve the survival and early life growth rates of cold-water fish by culturing rotifer (Brachionus plicatilis) with low-temperature tolerance. The enrichment experiment was carried out at different temperatures and over different time intervals. Cultivation of the rotifer at low temperatures was repeated, with the selected and cultured as the water temperature was gradually lowered from $20^{\circ}C$ to $10^{\circ}C$. Enrichment of the rotifer was completed using A, S, SCV and SCP. Enrichment was carried out after 6, 12 and 24 hours at three different temperatures (10, 15 and $20^{\circ}C$). In the growth experiments, the rotifer increased to approximately triple their original size, from $350{\pm}7.9ind./ml$ to $1,064{\pm}5.7ind./ml$ at $10^{\circ}C$ over 50 days. The fatty acid composition of the four enrichment materials was species-specific, with the highest ratios belonging to eicosapentaenoic acid (EPA, C20:5n-3) and docosahezaenoic acid (DHA, C22:6n-3) in SCP. The fatty acid composition of the rotifers was affected by the enrichment materials. The EPA (% of total fatty acid) was more than 2 % in SCP, which showed a higher ratio than the other enrichment materials. DHA was higher in S reaching 12.40 % at $15^{\circ}C$ for 24 hours. The highest levels of EPA (3.09 %) and DHA (11.65 %) were obtained after the rotifers were enriched with S at $20^{\circ}C$ for 12hours.

The PL Characteristics of ZnO Thin Film on Flexible Polymer by Pulse Laser Deposition

  • Choi, Young-Jin;Lee, Cheon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.245-247
    • /
    • 2012
  • In this study, ZnO films have been grown on PES (polyethersulfone) of flexible polymer substrate by PLD (pulsed laser deposition) and characterized for crystalline and optical properties. Growing conditions were changed with substrate temperatures ranging from 50 to $200^{\circ}C$ and laser power density ranging from 0.2 to $0.4J/cm^2$. When ZnO thin films are deposited at low temperature with a small laser power density, the (002) peaks of XRD to signify the crystal quality of ZnO thin films appear to be very weak and the (101) peaks to signify the chemical composition of oxygen and zinc are strong. The (002) peaks increase with the substrate temperature and laser power density because the energy needed for the supply of the combination regarding zinc and oxygen has increased. In this study, the best condition for growing ZnO thin film on PES is at a substrate temperature of $200^{\circ}C$ and with a laser density of $0.3J/cm^2$. The characteristics of PL were measured by UV and green luminescence.

A Study on the Effects of Friction and Wear Properties of PTFE Composites for Oil Free Air Compressor (무급유공기압축기 개발을 위한 PTFE계 복합재료의 마찰마모 특성에 관한 연구)

  • 김용직;정하돈;김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.67-74
    • /
    • 2000
  • Recently, PTFE-polymide composites are being used self-lubricating parts for industrial field. Thus, this study is mainly concerned with friction and wear properties for the piston ring of non-lubricating air compressor which made of PTFE-polymide composites. The friction and wear test was carried out for the different composition ratio under the atomsphere room temperature and constant load of 7.69N and their friction and wear properties were compared with each other at various sliding speed. notable results are summarized as follows. PTFE 100% showed that friction coefficient was almost same values at 0.94 and 1.88m/s but the value was decreased at 2.83m/s because the friction temperature is higher than low speed. PTFE 80%-PI 20% showed the lowest mean friction coefficient at 2.83m/s. PTFE 20-PI 80% showed the highest friction coefficient at 0.94m/s and the value was decreased at high speed but the value is higher than other materials except PTFE 100 %. PI 100% showed the highest friction coefficient at 0.94 and 1.88m/s becuase adhesive wear mainly occurred that speed. PTFE 100% showed highest specific wear rate on the whole. Specific wear rate of PTFE 80%-PI 20% was almost the same value with PTFE 20%-PI80%. PI 100%showed the lowest value at high sliding speed because the friction surface was thicken and carbonated by high friction temperature.

  • PDF