• Title/Summary/Keyword: low stream flow

Search Result 308, Processing Time 0.026 seconds

Changes in Aquatic Insect Community Structure in Wonju Stream based on a Comparison of Previous Studies (과거 문헌 비교를 통한 원주천 수서곤충 군집구조 변화)

  • Han, Jung Soo;Choi, Jun Kil;Won, Kyung Ho;Lee, Hwang Goo
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.400-411
    • /
    • 2018
  • This study was a survey of the Wonju stream in Wonju city from May 2015 to September 2016. A total of three sites were selected from the upstream area Gwanseol-dong to the downstream area Hojeo-myeon. Physicochemical analysis, aquatic insect changes, cluster analysis, functional group analysis, rarefaction curve, and statistical analysis were compared between 2004 and 2016. A total of 19 species (38.78%) in 2004 and 22 species (36.67%) in 2016 were analyzed, with the largest number belonging to ephemeroptera. The individual ratio ranged from 27,759.2 (ind. $m^{-2}$, 84.30%) in 2004 to 4,573.2 (ind. $m^{-2}$, 41.64%) in 2016, with the highest number involving diptera. As a result of the community analysis, significant differences were detected in the indices of dominance, diversity, evenness, and richness in 2004 and 2016 (p<0.05). Burrowers of the habitat orientation groups showed the greatest variation with an average of -68.00% (${\pm}2.15$) and the collector-gatherers of the functional feeding groups showed the highest variation of -40.12% (${\pm}1.77$). The rarefaction curve analysis suggested that the species was the poorest in the midstream regions in 2004 and 2016. Physical factors and water quality showed a significant correlation with diversity index, evenness index, and the number of individuals. MDS analysis of the similarity of upstream and downstream regions was high in 2004, and low in 2016. The differences were attributed to physicochemical changes such as increase in flow velocity due to improvement of small dams and changes in bottom structure.

Fish Community Characteristics and Distribution Aspect of Rhodeus pseudosericeus(Cyprinidae) in the Geumdangcheon(Stream), a Tributary of the Hangang Drainage System of Korea (한강 지류 금당천의 어류군집 특징과 멸종위기종 한강납줄개의 서식양상)

  • Mee-Sook Han;Myeong-Hun Ko
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.2
    • /
    • pp.151-162
    • /
    • 2023
  • This study investigated the characteristics of fish communities and inhabiting status of the endangered species, Rhodeus pseudosericeus, in the Geumdang Stream in Korea from March to October 2021. A total of 1,698 fish in 5 families and 25 species were collected from 7 survey stations during the survey period. The dominant species was Zacco platypus (relative abundance, 46.5%), and the subdominant species was Squalidus gracilis majimae (16.7%), followed by Rhynchocypris oxycephalus (12.0%), Z. koreanus (5.7%), Pungtungia herzi (3.2%), R. pseudosericeus (2.0%), R. notatus (1.9%), and Acheilognathus rhombeus (1.8%). Nine Korean endemic species (36.0%) were collected, including R. pseudosericeus, R. uyekii, Sarcocheilichthys variegatus wakiyae, Microphysogobio yaluensis, S. gracilis majimae, Z. koreanus, Cobitis nalbanti, Iksookimia koreensis, and Odontobutis interrupta. An exotic species, Micropterus salmoides, designated as an invasive alien species (IAS), was collected downstream. The investigation of the habitat patterns of the endangered species (class II), Rhodeus pseudosericeus, showed a habitat range of about 6 to 7 km in the middle of Geumdang Stream (RP-1 to RP-4), and this species inhabited the edge with water depths of 0.3 through 1.0 m with slow water flow and many aquatic plants. According to the community analysis results, the overall dominance and evenness indexes were low, while diversity and richness indexes were high, and the cluster structure was largely divided into upstream and middle-downstream areas. The river health (fish assessment index) evaluated using fish was assessed as good (3 stations), normal (3 stations), and bad (1 station), and water quality was evaluated as good both upstream and downstream. Compared to previous studies, the number of species was relatively similar, and among the species that appeared in the past, 13 species did not appear in this survey, while 6 species appeared for the first time in this survey. Disturbance factors included river construction, many weirs, and the appearance of the ecosystem-disturbing species, M. salmoides. Since Geumdang Strem has high conservation value because it is home to many species in the Acheilognathinae subfamily, including the endangered species R. pseudosericeus, continuous attention and systematic conservation measures are required.

Characterization of Low-Temperature Pyrolysis and Separation of Cr, Cu and As Compounds of CCA-treated Wood (CCA (Chromated Copper Arsenate) 처리 목재의 저온 열분해와 CCA 유효 성분분리 특성)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • This study was carried out to separate the heavy toxic metals in eco-building materials by low-temperature pyrolysis, especially arsenic (As) compounds in CCA wood preservative as a solid in char. The pyrolysis was carried out to heat the CCA-treated Hemlock at $280^{\circ}C$, $300^{\circ}C$, $320^{\circ}C$, and $340^{\circ}C$ for 60 mins. Laboratory scale pyrolyzer composed of [preheater$\rightarrow$pyrolyzer$\rightarrow$1st water scrubber$\rightarrow$2nd bubbling flask with 1% $HNO_3$ solution$\rightarrow$vent], and was operated to absorb the volatile metal compound particulates at the primary water scrubber and the secondary nitric acid bubbling flask with cooling condenser of $4^{\circ}C$ under nitrogen stream of 20 mL/min flow rate. And the contents of copper, chromium and arsenic compounds in its pyrolysis such as carbonized CCA treated wood, 1st washing and 2nd washing liquors as well as its raw materials, were determined using ICP-AES. The results are as follows : 1. The yield of char in low-temperature pyrolysis reached about 50 percentage similar to the result of common pyrolytic process. 2. The higher the pyrolytic temperature was, the more the volatiles of CCA, and in particular, the arsenic compounds were to be further more volatile above $320^{\circ}C$, even though the more repetitive and sequential monitorings were necessary. 3. More than 85 percentage of CCA in CCA-treated wood was left in char in such low-temperature pyrolytic condition at $300^{\circ}C$. 4. Washing system for absorption of volatile CCA in this experiment required much more contacting time between volatile gases and water to prevent the loss of CCA compounds, especially the loss of arsenic compound. 5. Therefore, more complete recovery of CCA components in CCA-treated wood required the lower temperature than $320^{\circ}C$, and the longer contacting time of volatile gases and water needed the special washing and recovery system to separate the toxic and volatile arsenic compounds in vent gases.

Design and Implementation of a Dynamic Instrumentation Framework based on Light-weight Dynamic Binary Translation (경량 동적 코드 변환 기법을 이용한 동적 인스트루멘테이션 기법 설계 및 구현)

  • Kim, Jeehong;Lee, Dongwoo;Kim, Inhyeok;Eom, Young Ik
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.892-899
    • /
    • 2014
  • Dynamic binary instrumentation is a code insertion technique for debugging a program without scattering its execution flow, while the program is running. Most dynamic instrumentations are implemented using dynamic binary translation techniques. Existing studies translated program codes dynamically by parsing the machine code stream to intermediate representation (IR) and then applying compilation techniques for IRs. However, they have high overhead during translation, which is a major cause of difficulty in applying the dynamic binary translation technique to the program which requires high responsiveness. In this paper, we introduce a light-weight dynamic binary instrumentation framework based on a novel dynamic binary translation technique which has low overhead while translating the program code. In order to reduce the translation overhead, our approach adopts a tabular-based address translation and exploits a translation bypassing scheme, which stores the translated address of a frequently called library function in advance. It then accesses the translated address and executes function codes without code translation when calling the function. Our experiment results demonstrated that the proposed approach outperforms the prior dynamic binary translation techniques from 2% up to 65%.

Geophysical surveys for delineation of leachate flows from AMD and buried rock wastes in Kwangyang abandoned mine (광양 폐광산의 산성광산배수의 유동경로 및 폐광석 탐지를 위한 지구물리탐사)

  • 김지수;한수형;윤왕중;김대화;이경주;최상훈;이평구
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.123-131
    • /
    • 2003
  • Geophysical surveys(electrical resistivity, self-potential, seismic refraction, GPR) were conducted to investigate the physical properties of the subsurface, and to delineate the flow channel of leachate from a AMD(acid mine drainage), buried rock wastes and tailings, and drainage pipes at an abandoned mine(Kwangyang mine). Especially in rainy season the sites appear to be abundant in AMD leachate, characterized by electrical conductivities of 0.98-1.10 ms/S. Electrical resistivity sections indicate that the leachate flows running in two directions at southern part rise up through the narrow fracture zones at the central part and contaminates the surrounding soil and stream. Such schematic features at the anomalous zone are well correlated with negative peaks in self-potential data, the limited penetration depth in GPR data and low velocity zone in seismic refraction data. Shallow high-resistivity zone is associated with the buried rock wastes which cause the diffractions in GPR image. In addition, the events at depth of approximately 1-1.25 m in GPR sections must be the metal pipes through which AMD is drained off to the inner bay.

Water Balance Analysis of Pumped-Storage Reservoir during Non-Irrigation Period for Recurrent Irrigation Water Management (순환형 농업용수관리를 위한 농업용 저수지의 비관개기 양수저류 추정)

  • Bang, Na-Kyoung;Nam, Won-Ho;Shin, Ji-Hyeon;Kim, Han-Joong;Kang, Ku;Baek, Seung-Chool;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.1-12
    • /
    • 2020
  • The extreme 2017 spring drought affected a large portion of South Korea in the Southern Gyeonggi-do and Chungcheongnam-do districts. This drought event was one of the climatologically driest spring seasons over the 1961-2016 period of record. It was characterized by exceptionally low reservoir water levels, with the average water level being 36% lower over most of western South Korea. In this study, we consider drought response methods to alleviate the shortage of agricultural water in times of drought. It could be to store water from a stream into a reservoir. There is a cyclical method for reusing water supplied from a reservoir into streams through drainage. We intended to present a decision-making plan for water supply based on the calculation of the quantity of water supply and leakage. We compared the rainfall-runoff equation with the TANK model, which is a long-term run-off model. Estimations of reservoir inflow during non-irrigation seasons applied to the Madun, Daesa, and Pungjeon reservoirs. We applied the run-off flow to the last 30 years of rainfall data to estimate reservoir storage. We calculated the available water in the river during the non-irrigation season. The daily average inflow from 2003 to 2018 was calculated from October to April. Simulation results show that an average of 67,000 tons of water is obtained during the non-irrigation season. The report shows that about 53,000 tons of water are available except during the winter season from December to February. The Madun Reservoir began in early October with a 10 percent storage rate. In the starting ratio, a simulated rate of 4 K, 6 K, and 8 K tons is predicted to be 44%, 50%, and 60%. We can estimate the amount of water needed and the timing of water pump operations during the non-irrigation season that focuses on fresh water reservoirs and improve decision making for efficient water supplies.

Estimation of Specific Yield Using Rainfall and Groundwater Levels at Shallow Groundwater Monitoring Sites (충적층 지하수 관측지점의 강우량 대비 지하수위 변동 자료를 활용한 비산출율 추정)

  • Kim, Gyoobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.57-67
    • /
    • 2010
  • Specific yield is an essential parameter of the water table fluctuation method for recharge calculation. Specific yield is not easily estimated because of limited availability of aquifer test data and soil samples at National Groundwater Monitoring Stations in South Korea. The linear relationship between rainfall and water level rise was used to estimate the specific yields of aquifer for 34 shallow monitoring wells which were grouped into three clusters. In the case of Cluster-1 and Cluster-2, this method was not applicable because of low cross correlation between rainfall and water level rise and also a long lag time of water level rise to rainfall. However, the specific yields for 19 monitoring wells belonging to Cluster-3, which have relatively high cross correlation and short lag time, within 2 days after rainfall, range from 0.06 to 0.27 with mean value of 0.17. These values are within the general range for sand and gravel sediments and similar to those from aquifer test data. A detailed field survey is required to identify monitoring sites that are not greatly affected by pumping, stream flow, evapotranspiration, or delayed response of water levels to rainfall, because these factors may cause overestimation of specific yield estimates.

Analysis of coenzyme Q10 in human plasma by high performance liquid chromatography (고성능액체크로마토그라피를 이용한 혈장 내 코엔자임 큐텐 분석)

  • Park, Yong-Sun;Park, Sang-Boem;Song, Sean-Mi;Kim, Yong-Woo;Lee, Kyoung-Ryul
    • Analytical Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.514-518
    • /
    • 2009
  • Coenzyme $Q_{10}$($CoQ_{10}$), a vitamin E-like substance, represents a components of the complex antioxidant system of the human organism. $CoQ_{10}$ levels in human plasma were determined by high performance liquid chromatography (HPLC) with UV detection. It was dissociated from lipoproteins by methanol and extracted into n-hexane with liquid-liquid extraction procedure, after centrifugation, the supernatant was dried under nitrogen gas stream. The residue was dissolved in the absolute ethanol. Determination of $CoQ_{10}$ was performed on a $C_{18}$ reversed-phase analytical column with ultraviolet detection at 275 nm and the mobile phase containing 15% (v/v) ethanol in methanol at a flow rate of 1.7 mL/min. The low limit of quantitation was 0.02 mg/L (S/N=10), the linearity between the concentration and peak height is from 0.1 to 2.0 mg/L. Twenty-four randomly selected plasma samples from apparently healthy, 27 to 44 year old individuals (males and females) were analyzed for total $CoQ_{10}$. The average level in these subjects was $0.62{\pm}0.13mg/L$ with the range of 0.41-0.98 mg/L. This method has a specific and a sufficient limit of quantitation (LOQ) for analysis of $CoQ_{10}$ in human plasma in both a clinical study and research at laboratories.

Scaling up of single fracture using a spectral analysis and computation of its permeability coefficient (스펙트럼 분석을 응용한 단일 균열 규모확장과 투수계수 산정)

  • 채병곤
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.29-46
    • /
    • 2004
  • It is important to identify geometries of fracture that act as a conduit of fluid flow for characterization of ground water flow in fractured rock. Fracture geometries control hydraulic conductivity and stream lines in a rock mass. However, we have difficulties to acquire whole geometric data of fractures in a field scale because of discontinuous distribution of outcrops and impossibility of continuous collecting of subsurface data. Therefore, it is needed to develop a method to describe whole feature of a target fracture geometry. This study suggests a new approach to develop a method to characterize on the whole feature of a target fracture geometry based on the Fourier transform. After sampling of specimens along a target fracture from borehole cores, effective frequencies among roughness components were selected by the Fourier transform on each specimen. Then, the selected effective frequencies were averaged on each frequency. Because the averaged spectrum includes all the frequency profiles of each specimen, it shows the representative components of the fracture roughness of the target fracture. The inverse Fourier transform is conducted to reconstruct an averaged whole roughness feature after low pass filtering. The reconstructed roughness feature also shows the representative roughness of the target subsurface fracture including the geometrical characteristics of each specimen. It also means that overall roughness feature by scaling up of a fracture. In order to identify the characteristics of permeability coefficients along the target fracture, fracture models were constructed based on the reconstructed roughness feature. The computation of permeability coefficient was performed by the homogenization analysis that can calculate accurate permeability coefficients with full consideration of fracture geometry. The results show a range between $10^{-4}{\;}and{\;}10^{-3}{\;}cm/sec$, indicating reasonable values of permeability coefficient along a large fracture. This approach will be effectively applied to the analysis of permeability characteristics along a large fracture as well as identification of the whole feature of a fracture in a field scale.

Site Selection for Geologic Records of Extreme Climate Events based on Environmental Change and Topographic Analyses using Paleo Map for Myeongsanimni Coast, South Korea (고지도 기반 환경변화연구 및 지형분석을 통한 명사십리 해안의 제4기 연안지대 이상기후 퇴적기록 적지선정)

  • Kim, Jieun;Yu, Jaehyung;Yang, Dongyoon
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.589-599
    • /
    • 2014
  • This study selected optimal sites in Myeongsasimni located in west coast of Korea for stratigraphic research containing extreme climate event during quaternary period by spatio-temporal analyses of changes in sedimentary environment and land use employing 1918 topographic map, 2000 digital terrain map, 1976 and 2012 air photographies. The study area shows no significant changes in topographic characteristics that hilly areas with relatively large variations in elevation are distributed over north and south part of the study area, and sand dues are developed along the coast line. Moreover, flat low lying areas are located at the back side of the sand dues. The movement of surface run off and sediment loads shows two major trends of inland direction flow from back sides of sand dunes and outland direction flow from high terrains inland, and the two flows merge into the stream located in the center of the study area. Two sink with individual area of $0.2km^2$ are observed in Yongjeong-ri and Jaryong-ri which are located in south central part and south part of the study area, respectively. In addition, sea level change simulation reveals that $3.4km^2$ and $3.64km^2$ are inundated with 3 m of sea level rise in 1918 and 2000, respectively, and it would contribute to chase sea level change records preserved in stratigraphy. The inundated areas overlaps well with sink areas where it indicates the low lying areas located in south cental and south part of the study area are identical for sediment accumulation. The areas with minimal human impact on sediment records over last 100 years are $3.51km^2$ distributed over central and south part of the study area with the land use changes of mud and rice field in 1918 to rice field in 2012. The candidate sites of $0.15km^2$ in central part and $0.09km^2$ in south part are identified for preferable locations of geologic record of extreme climate events during quaternary period based on the overlay analysis of optimal sedimentary environment and land use changes.