DOI QR코드

DOI QR Code

Site Selection for Geologic Records of Extreme Climate Events based on Environmental Change and Topographic Analyses using Paleo Map for Myeongsanimni Coast, South Korea

고지도 기반 환경변화연구 및 지형분석을 통한 명사십리 해안의 제4기 연안지대 이상기후 퇴적기록 적지선정

  • Kim, Jieun (Department of Astronomical Science and Geology, Chungnam National University) ;
  • Yu, Jaehyung (Department of Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Yang, Dongyoon (Geological Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 김지은 (충남대학교 대학원 우주지질학과) ;
  • 유재형 (충남대학교 지질환경과학과) ;
  • 양동윤 (한국지질자원연구원 국토지질연구본부)
  • Received : 2014.09.30
  • Accepted : 2014.11.24
  • Published : 2014.12.28

Abstract

This study selected optimal sites in Myeongsasimni located in west coast of Korea for stratigraphic research containing extreme climate event during quaternary period by spatio-temporal analyses of changes in sedimentary environment and land use employing 1918 topographic map, 2000 digital terrain map, 1976 and 2012 air photographies. The study area shows no significant changes in topographic characteristics that hilly areas with relatively large variations in elevation are distributed over north and south part of the study area, and sand dues are developed along the coast line. Moreover, flat low lying areas are located at the back side of the sand dues. The movement of surface run off and sediment loads shows two major trends of inland direction flow from back sides of sand dunes and outland direction flow from high terrains inland, and the two flows merge into the stream located in the center of the study area. Two sink with individual area of $0.2km^2$ are observed in Yongjeong-ri and Jaryong-ri which are located in south central part and south part of the study area, respectively. In addition, sea level change simulation reveals that $3.4km^2$ and $3.64km^2$ are inundated with 3 m of sea level rise in 1918 and 2000, respectively, and it would contribute to chase sea level change records preserved in stratigraphy. The inundated areas overlaps well with sink areas where it indicates the low lying areas located in south cental and south part of the study area are identical for sediment accumulation. The areas with minimal human impact on sediment records over last 100 years are $3.51km^2$ distributed over central and south part of the study area with the land use changes of mud and rice field in 1918 to rice field in 2012. The candidate sites of $0.15km^2$ in central part and $0.09km^2$ in south part are identified for preferable locations of geologic record of extreme climate events during quaternary period based on the overlay analysis of optimal sedimentary environment and land use changes.

본 연구에서는 서해 명사십리 일대의 제 4기 극한재해 퇴적기록 보존지역을 선정하기 위해, 1918년 일제 강점기 지형도, 2000년 수치지형도, 1976년 항공사진 및 2012년 항공사진을 이용하여 작성한 수치표고모델과 지표이용도를 순차 비교 분석하여 연구지역의 퇴적환경 및 지표환경 변화를 고찰하였다. 연구지역의 지형적 특징은 지난 100여 년간 큰 변화가 없었으나 연구지역의 북부와 남부에는 고도의 변화폭이 상대적으로 큰 구릉지가 위치하고 해안에 평행하게 사구가 발달하며 연구지역 남부 사구의 후면으로 내륙에 평탄한 저지대가 위치한다. 연구지역 유수 및 퇴적물의 이동 방향을 분석한 결과 사구에서 내륙으로 이동하는 흐름과 내륙의 높은 지대에서 해안으로 이동하는 흐름이 연구 지역 중부를 가로지르는 하천을 향하여 이동하며 중남부 용정리와 남부 자룡리의 평탄한 저지대에 각각 $0.2km^2$의 넓이를 가지는 저수지역을 형성할 수 있다. 또한 연구지역 해수면 변화기록을 보존하는 지역을 찾기 위하여 해수면을 상승시킨 결과 해수면이 3 m 상승했을 때 침수되는 지역은 1918년 $3.4km^2$, 2000년 $3.64km^2$으로 저수지역이 형성되는 위치와 중첩되며 남부의 평탄한 저지대가 해수범람 퇴적층의 형성이나 퇴적물의 집적에 용이한 환경임을 지시한다. 100여 년간 인간의 활동으로 인한 지표 환경 변화가 제한적이었던 지역은 약 $3.51km^2$의 면적으로 연구지역 중부에서 남부에 분포하며 1918년에는 점토 퇴적지, 논으로 활용되었고 2012년에 이르러서는 모두 논으로 이용되고 있다. 연구지역의 퇴적환경과 지표이용변화를 중첩 분석한 결과, 제4기 퇴적기록을 보존하고 있을 가능성이 가장 높은 지역은 연구지역 중부에 약 $0.15km^2$, 남부에 $0.09km^2$의 면적으로 존재하며 이 지역을 중심으로 과거 이상기후 퇴적기록을 연구하는 것이 효과적일 것으로 기대된다.

Keywords

References

  1. Bae, S.H. (2007) Urban Change Analysis using the 1:50,000 Topographical Map which is Produced at 1910's. Journal of the Korean Association of Geographic Information Studie, v. 10 (3), p. 93-103.
  2. Baek, K.R. (2014) Estimation of Natural Variance of Topography. Magazine of Korean Society of Hazard Mitigation, v. 14 (1), p. 81-87.
  3. Cheung, K.F., Tang, L., Donnelly, J.P., Scileppi, E.M., Liu, K., Mao, X., Houston, S. H., Murane, R. J. (2007) Numerical modeling and field evidence of coastal overwash in southern New England from Hurricane Bob and implications for paleotempestology, Journal of Geophysical Research, v. 112. DOI: 10.1029/2006JF000612
  4. Davis, R.A. (1992) Depositional systems: An introduction to sedimentology and stratigraphy. Prentice Hall, Englewood Cliffs, New Jersey, p. 342-404.
  5. Dawson, A.G., Stewart, I. (2007) Tsunami deposits in the geological record. Sedimentary Geology, v. 200, p. 166-183. https://doi.org/10.1016/j.sedgeo.2007.01.002
  6. Frappier, A., Knutson, T., Liu, K., Emanuel, K. (2007) Perspective: coordinating paleoclimate research on tropical cyclones with hurricane-climate theory and modelling. Tellus A. v. 59 (4), p. 529-537. https://doi.org/10.1111/j.1600-0870.2007.00250.x
  7. Hutchinson, M.F. (1996) A locally adaptive approach to the interpolation of digital elevation models. In Proceedings, Third International Conference/Workshop on Integrating GIS and Environmental Modeling. Santa Barbara, CA: National Center for Geographic Information and Analysis See: http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/hutchinson_michael_dem/local.html.
  8. Hutchinson, M.F. and Gallant, J.C. (2000) Digital elevation models and representation of terrain shape. In: J.P. Wilson and J.C. Gallant (eds) Terrain Analysis. Wiley, New York, p. 29-50.
  9. Jenson, S.K., and Domingue, J.O. (1988) Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis. Photogrammetric Engineering and Remote Sensing, v. 54 (11), p. 1593-1600.
  10. Kain, C.L., Gomez, C., Hart, D.E., Wassmer, P., Goff, J., Starheim, C. (2014) Assessing topographic controls on flow direction in washover deposits using measurements of Magnetic Fabric. Marine Geology, v. 350, p. 16-26. https://doi.org/10.1016/j.margeo.2014.01.010
  11. Kim, N.S. (2009) Updating DEM for Improving Geomorphic Details. Journal of the Korean Association of Geographic Information Studies, v. 12 (1), p. 64-72.
  12. Lee, B. J., Kim, J. C., Kim, Y. B., Cho, D. L., Choi, H. I., Chun, H. Y., Kim, B. C. (1997) Geologic report of the Gwangju sheet (1:250,000), Korea Institute of geoscience and mineral resources, p. 82.
  13. Liu, K., Lu, H., Shen, C. (2008) A 1200-year proxy record of hurricanes and fires the Gulf of Mexico coast; Testing the hypothesis of hurricane-fire interactions. Quaternary Research, v. 69, p. 29-41. https://doi.org/10.1016/j.yqres.2007.10.011
  14. Mark, D. M. (1988) Network Models in Geomorphology. Modelling Geomorphological Systems, ed. M. G. Anderson. New York: John Wiley. p. 73-97.
  15. Ministry of Environment. (2007) Report on the Precise Investigation of Sand Dune in Korean Coastline-Wonsan, Obong, Gwangseung, p. 381-394.
  16. Nott. J. (2004) Paleotempestology: the study of prehistoric tropical cyclones - a review and implications for hazard assessment. Environmental International, v. 30 (3), p. 433-447. https://doi.org/10.1016/j.envint.2003.09.010
  17. Park. Y.H. (2008) Experimental Study of Overwash. Journal of the Korean Society of Coastal and Ocean Engineers, v. 17. p. 104-107.
  18. Wang, P., Horwitz, M. H. (2007) Erosional and depositional characteristics of regional overwash deposits caused by multiple hurricanes. Sedimentology, v. 54, p. 545-564. https://doi.org/10.1111/j.1365-3091.2006.00848.x
  19. Yu, S. S. (2009) Changes of Landforms and Land uses of Gochang-gun Coastal fringe, Master Dissertation, Chonbuk National University, Jeollabuk-do, Korea,

Cited by

  1. Analysis of Quaternary Sedimentary Environment based on 3D Geological Modeling for Saban-ri, Haeri-myeon, Gochang vol.49, pp.4, 2016, https://doi.org/10.9719/EEG.2016.49.4.291