DOI QR코드

DOI QR Code

Genetic Relationship and Structural Characteristics of the Fe-Ti Ore Body and the Sancheong Anorthosite, Korea

산청 회장암과 철-티탄 광체의 구조적 특징과 발생적 관계

  • Kang, Ji-Hoon (Department of Earth and Environmental Sciences, Andong National University) ;
  • Lee, Deok-Seon (Department of Earth and Environmental Sciences, Andong National University)
  • 강지훈 (안동대학교 지구환경과학과) ;
  • 이덕선 (안동대학교 지구환경과학과)
  • Received : 2014.11.13
  • Accepted : 2014.12.28
  • Published : 2014.12.28

Abstract

It consists of the Precambrian Jirisan metamorphic complex and Sancheong anorthosite complex and the Mesozoic granitoids which intrude them in the Sancheong area, the Jirisan province of Yeongnam massif, Korea. The study area is located in the western part of the stock-type Sancheong anorthosite complex. We performed a detailed fieldwork on the Sancheong anorthosite (SA) and Fe-Ti ore body (FTO) which constitute the Sancheong anorthosite complex, and reinterpreted the origin of FTO foliation and the genetic relationship between them from the foliations, shear zones, occurrences of the SA and FTO. The new structural characteristics between them are as follows: the multilayer structures of FTO, the derived veins of straight, anastomosing uneven types and block structures related to the size reduction of SA, the gradual or irregular boundaries of SA blocks and FTO showing bulbous lobate margins and comb structures, the FTO foliation and linear arrangements of flow occurrence which is not ductile shear deformation, the discontinuous shear zone of SA, the orientation of FTO foliations parallel to the boundaries of SA blocks, the predominance of FTO foliations toward the boundaries of SA blocks and being proportional to the aspect ratio of plagioclase xenocrysts and SA xenoblocks, and the flow folding structures of FTO foliation. Such field evidences indicate that the SA is not fully congealed when the FTO is melt and the fracturing of partly congealed SA causes the derived veins of FTO and the size reduction of SA. Also the gradual or irregular boundaries of SA blocks and FTO result from the mutual reaction between the not fully congealed SA blocks and the FTO melt, and the FTO foliation is a magmatic foliation which was formed by the interaction between the FTO melt and the partly congealed SA blocks. Therefore, these suggest that the SA and FTO are not formed from the intrusion of different magmas in genesis and age but from a coeval and cogenetic magma through multiple fractionation. We predict that the FTO will show an very irregular occurrence injected along irregular fractures, not the regular occurrence like as the intrusive vein and dike. It can be applied to the designing of Fe-Ti mineral resource exploration in this area.

영남육괴 지리산지구의 산청지역은 선캠브리아기 지리산 변성암복합체와 이를 관입하는 산청 회장암복합체(이하, 회장암체) 그리고 이들을 관입하는 중생대 화성암류 등으로 구성되어 있고, 연구지역은 암주상 산청 회장암체의 서부에 위치한다. 본 연구는 산청 회장암체에 산출하는 산청 회장암(이하, SA)과 철-티탄 광체(이하, FTO)를 중심으로 노두별 상세한 야외지질조사를 수행하였으며, SA와 FTO의 엽리, 전단대, 산상 등으로부터 FTO 엽리의 성인과 이들 사이의 발생적 관계를 새롭게 해석하였다. 지금까지 밝혀진 SA와 FTO 사이의 구조적 특징은 다음과 같다: FTO의 다중 층상구조, SA의 세립화와 관련된 직선상, 혈관상, 요철상, 직각형 블록구조의 파생세맥, 점이적이고 불규칙한 SA 블록과 FTO 사이의 설상 또는 둥근 열편상 잠입 경계면 구조, 연성전단변형이 아닌 유동적 산상의 FTO 엽리와 FTO 엽리면상의 선상배열, SA 내에 발달하는 불연속전단대, SA 블록의 경계면에 평행한 FTO 엽리의 방향성, SA 블록의 경계면을 향한 FTO 엽리의 우세한 발달, 사장석 포획결정과 포획된 SA 블록의 종횡비에 비례하는 FTO 엽리의 우세성, FTO 엽리의 유동 습곡구조. 이러한 구조적 특징으로부터 FTO가 용융체로 존재할 당시에 SA가 완전히 고화되지 않았으며, 부분 고화된 SA의 단열작용은 FTO의 파생세맥과 SA의 세립화를 초래하였음을 알 수 있다. 또한 SA 블록과 FTO 사이에 점이적이고 불규칙한 경계면은 완전히 응결되지 않은 SA 블록와 FTO 용융체 사이의 상호반응에 의해 형성되었으며, FTO 엽리는 마그마 엽리로서 FTO 용융체와 부분 고결된 SA 블록 사이에 상호운동의 결과로 형성되었음을 알 수 있다. 이는 SA와 FTO는 성인과 시대를 달리하는 서로 다른 마그마의 관입관계가 아니라 동일시대의 동일기원 마그마의 다단계 분별정출작용에 의해 형성되었음을 의미하고, FTO는 관입적인 (암)맥상과 같이 규칙적인 산상이 아니라 불규칙한 단열을 따라 주입된 매우 불규칙한 산상을 보인 것으로 해석되며, Fe-Ti 광물자원 탐사 시에 적용될 수 있을 것이다.

Keywords

References

  1. Ahn, S.-H., Kim, J.-S., Cho, H.S., Song, C.-W., Son, M., Ryoo, C.-R. and Kim, I.-S. (2010) Classification and Relative Chronology of Dyke Swarms in the Proterozoic Sancheong Anorthositic Rocks, South Korea. Journal of the Geological Society of Korea. v.46, p.13-30.
  2. Ashwal, L.D. (1993) Anorthosites. Springer-Verlag, Berlin, 422p.
  3. Balk, R. (1931) Structural geology of Adirodack anorthosite. MinPett Bd, v.41, p.308-434.
  4. Balk, R. and Cloos, H. (1937) Structural Behaviour of Igneous Rocks: With Special Reference to Interpretations. Geological Society of America, 177p.
  5. Castro, A. (1986) Structural pattern and ascent model in the Central Extremadura batholith, Hercynian belt, Spain. Journal of Structural Geology, v.6, p.633-645.
  6. Charlier, B., Skar, O., Korneliussen, A., Duchesne, J.-C. and Vander Auwera, J. (2007) Ilmenite composition in the Tellnes Fe-Ti deposit, SW Norway: fractional crystallization, postcumulus evolution and ilmenitezircon relation. Contributions to Mineralogy and Petrology, v.154, p.119-134. https://doi.org/10.1007/s00410-007-0186-8
  7. Chi, S.-J., Koh, S.-M., Pak, S.-J., Koh, I.-S., Seo, J.-R., Kim, D.-Y., Yoo, J.-H., Kim, S.-Y., Lee, M.-J., Kim, Y.-U., Lee, J.-H., Kim, Y.-D., Lee, H.-Y., Kim, I.-J., Heo, C.-H. and Ryoo, C.-R. (2008) Revaluation of strategy mineral resources and development of exploration techniques for ore deposits. Korea Institute of Geoscience and Mineral Resources, GP2007-017-2008(2), 121-157./ 403p.
  8. Choi, J.B. and Kwak, J.Y. (2012) Occurrence of REE-bearing Allanite with Th-mineral (thorite) in Wolhoengri, Hadong, Korea. Journal of the Mineralogical Society of Korea, v.25, p.295-304. https://doi.org/10.9727/jmsk.2012.25.4.295
  9. Choi, Y.K., Cheong, C.H., Lee, D.S., Kim, S.W. and Kim, S.J. (1964) Geological report of the Danseong sheet (1:50,000). Kyeong sang nam do, Korea, 28p.
  10. Chubb, P.T., Peck, D.C., James, R.S. and Ercit, T.S. (1995) Nature and origin of nodular textures in anorthositic cumulates from the East Bull Lake Intrusion, Ontario, Canada. Mineralogy and Petrology, v.54, p.93-103. https://doi.org/10.1007/BF01162761
  11. Davis, G.H. and Reynolds, S.J. (1996) Structural geology: passive folding. John Wiley and Sons. Inc., p.503-508.
  12. Gapais, D. and Barbarin, B. (1986) Quartz fabric transition in a cooling syntectonic granite (Hermitage Massif, France). Tectonophysics, v.125, p.357-370. https://doi.org/10.1016/0040-1951(86)90171-X
  13. Guineberteau, B., Bouchez, J.L. and Vigneresse, J.L. (1987) The Mortagne granite pluton (France) emplaced by pull-apart along a shear zone: Structural and gravimetric arguments and regional implication. Geological Society of America Bulletin, v.99, p.763-770. https://doi.org/10.1130/0016-7606(1987)99<763:TMGPFE>2.0.CO;2
  14. Hibbard, M.J. (1987) Deformation of Incompletely Crystallized Magma Systems: Granitic Gneisses and their Tectonic Implications. The Journal of Geology, v.95, p.543-561. https://doi.org/10.1086/629148
  15. Jeong, J.-G. (1987) Magmatic Differentiation of the Anorthositic Rocks in Hadong-Sancheong Area. Journal of the Geological Society of Korea, v.23, p.216-228.
  16. Jeong, J.-G., Kim, W.-S. and Watkinson, D.H. (1989) Geologic Structure of Hadong Anorthositic Rocks and Associated Titanium Orebody. Journal of the Geological Society of Korea, v.25, p.98-111.
  17. Jeong, J.-G. and Lee, S.-M. (1986) Regional metamorphism of anorthositic rocks in Hadong-Sancheong area. Memory for Professor Sang Man Lee's 60th, p.87-106.
  18. Jeong, J.-G. and Song, M.-Y. (1990) Geophysical Research for the Titanium Orebody Impregnated in Anorthositic Rocks, Ogjong-Myun Hadong-Gun. Journal of the Korean Earth Science Society, v.11, p.111-119.
  19. Jung, J.S., Kim, J.-S., Cho, H.S., Song, C.-W., Son, M., Ryoo, C.-R., Chi, S.J. and Kim, I.-S. (2010) Occurrence and Deformation of Fe-Ti ores from the Proterozoic Hadong Anorthosites, Korea. Journal of the Petrological Society of Korea, v.19, p.31-49.
  20. Kang, H.-C., Kim, I.-S. and Son, M. (2001) Palaeomagnetic Results from Late Palaeoproterozoic anorthositic rocks in Hadong-Sanchong area, South Korea. Journal of the Geological Society of Korea, v.37, p.269-286.
  21. Kim, D.-Y., Park, K.-H. and Song, Y.-S. (2000) Development ages of charnockites and anorthositic rocks of Jirisan area and their genetic relationship (Abstract). Proceedings of the Annual Joint Conference, Petrological Society of Korea and Mineralogical Society of Korea, p.37.
  22. Kim, J.-S., Ahn, S.-H., Cho, H.S., Song, C.-W., Son, M., Ryoo, C.-R. and Kim, I.-S. (2011) Occurrences of Fe-Ti Ore Bodies and Mafic Granulite in the Sancheong Anorthosites, Korea. Journal of the Petrological Society of Korea, v.20, p.115-135. https://doi.org/10.7854/JPSK.2011.20.2.115
  23. Kim, J.-S., Cho, H.S., Ahn, S.-H., Song, C.-W., Son, M. and Kim, I.-S. (2010) SHRIMP U-Pb age of the Sancheong Anorthositic Rocks and Dyke Swarms, Yeongnam Massif, Korea (Abstract). Joint conference of the Geological Science and Technology of Korea, p.125-126.
  24. Kim, K.H. and Chung, J.-I. (1994) Paleomagnetic Study on the Anorthositic and Basic Intrusive Rocks Distributed in the Hadong-Sancheong Area. Journal of the Geological Society of Korea, v.30, p.81-92.
  25. Kim, O.J., Park, H.I., Kim, K.T., Hong, M.S., Park, Y.D. and Yoon, S. (1964) Geological report of the Sancheong sheet(1:50,000). Kyeong sang nam do, Korea, 25p.
  26. Kim, S.-W., Choi, E.-K. and Kim, I.-S. (1999) Anisotropy of Magnetic Susceptibility (AMS) of Anorthositic Rocks in the Hadong-Sanchong Area. Journal of the Korean Geophysical Society, v.2, p.169-178.
  27. Kim, S.-Y., Seo, J.-R., Yang, J.-I, Kim, S.-B. (1991) Study on geology and ore deposits for rare metals in Hadong-Uljin Area, Korea. Korea Institute of Geoscience and Mineral Resources, KR-91-2D-1, 156p.
  28. Kim, W.-S., Jeong, J.-G., Lee, K.-H. and Watkinson, D.H. (1992) Rare Metal Occurrences within the Anorthosite in the Hadong-Sanchong area, Kyungnam Province, Korea. Journal of the Mineralogical Society of Korea, v.5, p.14-21.
  29. Ko, B.K. (2006) Petrological and geochemical studies of the petrogenesis of the Hadong-Sancheong anorthosite complex. Ph. D. dissertation, Kangwon National University, 154p.
  30. Koh, S.-M. (2010) Occurrences of Ilmenite Deposits in Hadong-Sancheong Area. Journal of the Mineralogical Society of Korea, v.23, p.25-37.
  31. Koh, S.-M., Yoo, J.-H., Kim, Y.-U., Lee, H.-Y., Kim, S.-Y. and Song, M.-S. (2003) Evaluation and Exploration of Titanium and Feldspar Deposits in Hadong-Sancheong-Hapcheon Area. Korea Institute of Geoscience and Mineral Resources, KR-03(c)-16, 70p.
  32. Kwon, S.-T. and Jeong, J.-G. (1990) Preliminary Sr-Nd isotope study of the Hadong-Sancheong anorthositic rocks in Korea: implication for their origin and for the Precambrian tectonics. Journal of the Geological Society of Korea, v.26, p.341-349.
  33. Lee, D.-S. and Kang, J.-H. (2012) Geological Structures of the Hadong Northern Anorthosite Complex and its surrounding Area in the Jirisan Province, Yeongnam Massif, Korea. Journal of the Petrological Society of Korea, v.21, p.287-307. https://doi.org/10.7854/JPSK.2012.21.3.287
  34. Lee, J.M., Jeong, J.G. and Kim, W.S. (1999) The Preliminary Study on the Evolution of Hadong Anorthositic Rocks and Their Genetic Relations with Ilmenite-Bearing Ore Bodies, Korea. Journal of the Geological Society of Korea, v.35, p.321-336.
  35. McLelland, J., Ashwal, L. and Moore, L. (1994) Composition and petrogenesis of oxide-, apatite-rich gabbronorites associated with Proterozoic anorthosite massifs: examples from the Adirondack Mountains, New York. Contributions to Mineralogy and petrology, v.116, p.225-238. https://doi.org/10.1007/BF00310702
  36. Owens, B.E. and Dymek, R.F. (2001) Petrogenesis of the Labrieville alkalic anorthosite massif, Grenville Province, Quebec. Journal of Petrology, v.42, p.1519-1546. https://doi.org/10.1093/petrology/42.8.1519
  37. Park, K.-H., Kim, D.-Y. and Song, Y.-S. (2001) Sm-Nd mineral ages of charnockites and ilmenite-bearing anorthositic rocks of Jirisan area and their genetic relationship. Journal of the Petrological Society of Korea, v.10, p.27-35.
  38. Park, K.-H., Song, Y.-S., Park, M.-E., Lee, S.-G. and Ryu, H.-J. (2000) Petrological, Geochemical and Geochronological Studies of Precambrian Basement in Northeast Asia Region: 1. Age of the Metamorphism of Jirisan Area. Journal of the Petrological Society of Korea, v.9, p.29-38.
  39. Park, Y.-R., Ko, B.K. and Lee, K.-S. (2004) Oxygen and Hydrogen Isotope Studies of Fluid-Rock Interaction of the Hadong-Sancheong Anorthositic Rocks. Journal of the Petrological Society of Korea, v.13, p.224-237.
  40. Passchier, C.W. (1982) Pseudotachylyte and the development of ultramylonite bands in the Saint-Barthelemy Massif, French Pyrenees. Journal of Structural Geology, v.4, p.69-79. https://doi.org/10.1016/0191-8141(82)90008-6
  41. Paterson, S.R., Vernon, R.H. and Tobisch, O.T. (1989) A review of criteria for the identification of magmatic and tectonic foliations in granitoids Original Research Article. Journal of Structural Geology, v.11, p.349-363. https://doi.org/10.1016/0191-8141(89)90074-6
  42. Pryer, L.L. (1993) Microstructures in feldspars from a major crustal thrust zone: the Grenville Front, Ontario, Canada. Journal of Structural Geology, v.15, p.21-36. https://doi.org/10.1016/0191-8141(93)90076-M
  43. Ryoo, C.-R., Kim, J.-S., Son, M., Koh, S.-M., Lee, H.Y. and Kang, J.-H. (2013) Development Pattern and Ductile Deformation of the Sancheong Fe-Ti Mineralized Zone, Korea. Journal of the Petrological Society of Korea, v.22, p.1-9. https://doi.org/10.7854/JPSK.2013.22.2.209
  44. Seo, J.-R., Park, S.-W., Lee, P.-K., Oh, M.-S. and Lee, B.-J. (1992) Study on geology and ore deposits for rare metals in Hadong Area, Korea. Korea Institute of Geoscience and Mineral Resources, KR-92-1C-2, 72p.
  45. Simpson, C. (1985) Deformation of granitic rocks across the brittle-ductile transition. Journal of Structural Geology, v.7, p.503-511. https://doi.org/10.1016/0191-8141(85)90023-9
  46. Son, C.M. and Cheong, J.G. (1972) On the Origin of Anorthosite in the Area of Hadong Sancheong, Gyeongsang-namdo, Korea. Journal of the Koeran Institute of Mining Geology, v.5, p.1-20.
  47. Uemura, T. (1981) Deformation facies, series and grades. Journal of the Geological Society of Japan, v.87, p.297-305. https://doi.org/10.5575/geosoc.87.297

Cited by

  1. Geometric and Kinematic Characteristics of Fracture System in the Sancheong Anorthosite Complex, Korea vol.25, pp.4, 2016, https://doi.org/10.7854/JPSK.2016.25.4.389
  2. Formation Process and Its Mechanism of the Sancheong Anorthosite Complex, Korea vol.48, pp.6, 2015, https://doi.org/10.9719/EEG.2015.48.6.431