• Title/Summary/Keyword: low reinforcement ratio

Search Result 136, Processing Time 0.029 seconds

Behavior of GFRP reinforced decks with various reinforcement ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 거동 실험)

  • You, Young-Jun;Park, Ji-Sun;Park, Young-Hwan;Kim, Hyeong-Yeol;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.49-52
    • /
    • 2008
  • The tensile and bond performance of GFRP rebar are different from those of conventional steel reinforcement. It requires some studies on concrete members reinforced with GFRP reinforcing bars to apply it to concrete structures. GFRP has some advantages such as high specific strength, low weight, non-corrosive nature, and disadvantage of larger deflection due to the lower modulus of elasticity than that of steel. Bridge deck is a preferred structure to apply FRP rebars due to the increase of flexural capacity by arching action. This paper focuses on the behavior of concrete bridge deck reinforced with newly developed GFRP rebar. A total of three real size bridge deck specimens were made and tested. Main variable was reinforcement ratio of GFRP rebar. Static test was performed with the load of DB-24 level until failure. Test results were compared and analyzed with ultimate load, deflection behavior.

  • PDF

Evaluation on Flexural Capacity of Reinforced Concrete Beams with Ultra-High Performance Cementitious Composites (UHPCC를 사용한 철근 콘크리트 보의 휨강도 평가)

  • Kang, Su-Tae;Park, Jung-Jun;Koh, Gyung-Taek;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.81-90
    • /
    • 2008
  • This paper concerns the flexural capacity of reinforced concrete beams with ultra-high performance cementitious composites(UHPCC). It was investigated if the existing equations to estimate the flexural capacity of reinforced fiberous concrete beams are applicable with the experiments including lightly reinforced concrete beams. The reinforcing effect when the steel fiber reinforced concrete was used in beams was also estimated. The results showed that the equation to predict the flexural capacity of reinforced steel fiber concrete by ACI 544 committee didn't have a good agreement with the test results and underestimated the flexural capacity in especially lightly reinforced beams with under 1.5% reinforcement ratio. the enhancement of flexural capacity was quite considerable in lightly reinforced beams when the steel fiber reinforced concrete was used. A equation to predict the reinforcing effect of steel fiber in reinforced steel fiber beams was developed. the equation was proposed as a function of both the characteristics of steel fiber and reinforcement ratio.

Prediction of Shear Strength in High-Strength Concrete Beams without Web Reinforcement Considering Size Effect (크기효과를 고려한 복부보강이 없는 고강도 콘크리트 보의 전단강도 예측식의 제안)

  • Bae, Young-Hoon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.820-828
    • /
    • 2003
  • Recent research has indicated that the current ACI shear provision provides unconservative predictions for large slender beams and beams with low level of longitudinal reinforcement, and conservative results for deep beams. To modify some problems of ACI shear provision, ultimate shear strength equation considering size effect and arch action to compute shear strength in high-strength concrete beams without stirrups is presented in this research. Three basic equations, namely size reduction factor, rho factor, and arch action factor, are derived from crack band model of fracture mechanics, analysis of previous some shear equations for longitudinal reinforcement ratio, and concrete strut described as linear prism in strut-tie model deep beams. Constants of basic equations are determined using statistical analysis of previous shear testing data. To verify proposed shear equation for each variable, effective depth, longitudinal reinforcement ratio, concrete compressive strength and shear span-to-depth ratio, about 300 experimental data are used and proposed shear equation is compared with ACI 318-99 code, CEB-FIP Model code, Kim &Park's equation and Zsutty's equation. The proposed shear equation is not only simpler than other shear equations, it is but also shown to be economical predictions and reasonable safety margin. Hence proposed shear strength equation is expected to be applied to practical shear design.

A Fundamental Study on the Steel Corrosion Due to Carbonation of Concrete (콘크리트의 중성화로 인한 철근의 부식에 관한 기초적 연구)

  • 이창수;윤인석;최성기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.203-206
    • /
    • 1998
  • In reinforced concrete carbonation of concrete leads to depassivation of the reinforcement, and hence to initiation of corrosion. As a result of carbonation accelerating experiment with using effect of wet-dry cycle and 15% concentration of CO ₂, the carbonation rate shows very distinct difference according to W/C ratio. OPC-40 estimated no carbonation depth, whereas OPC-60 estimated rapidly the carbonation rate. The comparative analysis of the carbonation rate accelerating depends on different kinds of cement shows fastest FAC-20. Also, highly W/C ratio's concrete shows low half-cell potential value and fast corrosion rate. During period for 14 weeks. corrosion rate was not severe. So, it can be concluded that only carbonation attack on concrete doesn't severly deteriorated except very poor qualitified concrete.

  • PDF

An Experimental Study on the Salt Resistance Properties with Concrete Materials under Marine Exposure Environment (I) (해양환경에 폭로한 콘크리트의 내염특성에 대한 실험적 연구 (I))

  • 신도철;김영웅;김용철;김동철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.51-56
    • /
    • 2002
  • Protection against salt attack in seawater is obtained by using a dense, quality concrete with a low water-cement ratio, and a components appropriate for producing concrete having the needed salt resistance. The objective of this study is to evaluate the feature of corrosion with using the various concrete materials under marine exposure environment. According to the test results, slag powder and anti -corrosion inhibitor showed high chloride resistance effect. Also concre crack have an influence on corrosion of steel in spite of mixed design for salt resistance concrete. The requirement for low permeability is essential not only to delay the effect of salt attack, but also to afford adquate protection to reinforcement with admixtures.

  • PDF

Seismic Performance Evaluation of RC Bridge Piers with Limited Ductility by the Pseudo-Dynamic Test (한정연성 철근콘크리트 교각의 유사동적 실험에 의한 내진 성능 평가)

  • Chung, Young-Soo;Park, Chang-Kyu;Park, Jin-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.705-714
    • /
    • 2003
  • Even though Korean peninsula is located in regions of moderate seismic risks, current seismic design provisions of the roadway bridge design code have adopted the AASHTO code which is based on the requirements for high seismic regions. The objective of this research is to investigate the seismic performance of circular reinforced concrete (RC) bridge piers with limited ductility, which may be desirable in low or moderate seismic regions, such as in Korea. Four test specimens were designed and constructed. The reference specimen was designed with longitudinal steel ratio as 1.01% and the confinement reinforcement ratio as 0.13% without considering earthquake, and three other test specimens were designed in accordance with a limited-ductility concept as 0.3% for the confinement steel ratio. This confinement ratio is 0.32 times of minimum lateral reinforcement specified in current seismic design provisions, and 2.3 times of lateral reinforcement required in nonseismic design provisions. The pseudo-dynamic test was carried out to evaluate the seismic performance of full-scale specimens in size of 1.2m diameter and 4.8m height. Judging from the experiment, the reference specimen was not satisfactory for the demand displacement ductility ${\mu}$=5.0, but three limited-ductility specimens appeared to have the displacement ductility of more than 5.

Seismic behavior of T-shaped steel reinforced high strength concrete short-limb shear walls under low cyclic reversed loading

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Su, Yisheng
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.681-701
    • /
    • 2016
  • This paper presents an experimental study of six steel reinforced high strength concrete T-shaped short-limb shear walls configured with T-shaped steel truss under low cyclic reversed loading. Considering different categories of ratios of wall limb height to thickness, shear/span ratios, axial compression ratios and stirrup reinforcement ratios were selected to investigate the seismic behavior (strength, stiffness, energy dissipation capacity, ductility and deformation characteristics) of all the specimens. Two different failure modes were observed during the tests, including the flexural-shear failure for specimens with large shear/span ratio and the shear-diagonal compressive failure for specimens with small shear/span ratio. On the basis of requirement of Chinese seismic code, the deformation performance for all the specimens could not meet the level of 'three' fortification goals. Recommendations for improving the structural deformation capacity of T-shaped steel reinforced high strength concrete short-limb shear wall were proposed. Based on the experimental observations, the mechanical analysis models for concrete cracking strength and shear strength were derived using the equivalence principle and superposition theory, respectively. As a result, the proposed method in this paper was verified by the test results, and the experimental results agreed well with the proposed model.

Study on the performance indices of low-strength brick walls reinforced with cement mortar layer and steel-meshed cement mortar layer

  • Lele Wu;Caoming Tang;Rui Luo;Shimin Huang;Shaoge Cheng;Tao Yang
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.439-453
    • /
    • 2023
  • Older brick masonry structures generally suffer from low strength defects. Using a cement mortar layer (CML) or steel-meshed cement mortar layer (S-CML) to reinforce existing low-strength brick masonry structures (LBMs) is still an effective means of increasing seismic performance. However, performance indices such as lateral displacement ratios and skeleton curves for LBMs reinforced with CML or S-CML need to be clarified in performance-based seismic design and evaluation. Therefore, research into the failure mechanisms and seismic performance of LBMs reinforced with CML or S-CML is imperative. In this study, thirty low-strength brick walls (LBWs) with different cross-sectional areas, bonding mortar types, vertical loads, and CML/S-CML thicknesses were constructed. The failure modes, load-carrying capacities, energy dissipation capacity and lateral drift ratio limits in different limits states were acquired via quasi-static tests. The results show that 1) the primary failure modes of UBWs and RBWs are "diagonal shear failure" and "sliding failure through joints." 2) The acceptable drift ratios of Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP) for UBWs can be 0.04%, 0.08%, and 0.3%, respectively. For 20-RBWs, the acceptable drift ratios of IO, LS, and CP for 20-RBWs can be 0.037%, 0.09%, and 0.41%, respectively. Moreover, the acceptable drift ratios of IO, LS, and CP for 40-RBWs can be 0.048%, 0.09%, and 0.53%, respectively. 3) Reinforcing low-strength brick walls with CML/S-CML can improve brick walls' bearing capacity, deformation, and energy dissipation capacity. Using CML/S-CML reinforcement to improve the seismic performance of old masonry houses is a feasible and practical choice.

Experimental study of the compressive strength of chemically reinforced organic-sandy soil

  • Hu, Jun;Zhang, Lei;Wei, Hong;Du, Juan
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.247-255
    • /
    • 2018
  • Organic-sandy soils that contain abundant organic matters are widely encountered in estuarine cities. Due to the existence of organic matters, the strength and stiffness of this type of soil are significantly low. As a result, various geotechnical engineering problems such as difficulties in piling and constructing embankments and a lack of strength in poured concrete may occur in many estuarine sites; ground improvement such as cement treatment to this type of soils is needed. In this study, laboratory tests were performed to investigate the compressive strength of organic-sandy soil reinforced with primarily cement, in which the influences of several factors, namely types of cement and additional stabilizing agent, cement content, and water-cement ratio, were investigated and the orthogonal experimental design scheme was adopted. Based on the test results, an optimal permutation of these influencing factors is suggested for the reinforcement of organic-sandy soils, which can provide a useful reference for the relevant engineering practice.

Seismic performance and damage assessment of reinforced concrete bridge piers with lap-spliced longitudinal steels

  • Chung, Young S.;Park, Chang K.;Lee, Eun H.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.99-112
    • /
    • 2004
  • It is known that lap splices in the longitudinal reinforcement of reinforced concrete (RC) bridge columns are not desirable for seismic performance, but it is sometimes unavoidable. Lap splices were practically located in the potential plastic hinge region of most bridge columns that were constructed before the 1992 seismic design provisions of the Korea Bridge Design Specification. The objective of this research is to evaluate the seismic performance of reinforced concrete (RC) bridge piers with lap splicing of longitudinal reinforcement in the plastic hinge region, to develop an enhancement scheme for their seismic capacity by retrofitting with glassfiber sheets, and to assess a damage of bridge columns subjected to seismic loadings for the development of rational seismic design provisions in low or moderate seismicity region. Nine (9) test specimens with an aspect ratio of 4 were made with three confinement ratios and three types of lap splice. Quasi-static tests were conducted in a displacement-controlled way under three different axial loads. A significant reduction of displacement ductility was observed for test columns with lap splices of longitudinal reinforcements, whose displacement ductility could be greatly improved by externally wrapping with glassfiber sheets in the plastic hinge region. A damage of the limited ductile specimen was assessed to be relatively small.