• 제목/요약/키워드: low pressure hydrogen

검색결과 338건 처리시간 0.031초

Basic Design of Hydrogen Liquefier Precooled by Cryogenic Refrigerator

  • Kim, Seung-Hyun;Chang, Ho-Myung;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제6권
    • /
    • pp.124-135
    • /
    • 1998
  • A thermodynamic cycle analysis is performed for refrigerator-precooled Linde-Hampson hydrogen liquefiers, including catalysts for the ortho-to-para conversion. Three different configurations of the liquefying system, depending upon the method of the o-p conversion, are selected for the analysis. After some simplifying and justifiable assumptions are made, a general analysis program to predict the liquid yield and the figure of merit (FOM) is developed with incorporating the commercial computer code for the thermodynamic properties of hydrogen. The discussion is focused on the effect of the two primary design parameters - the precooling temperature and the high pressure of the cycle. When the precooling temperature is in a range between 45 and 60 K, the optimal high pressure for the maximal liquid yield is found to be about 100 to 140 bar, regardless of the ortho-to-para conversion. However, the FOM can be maximized at slightly lower high pressures, 75 to 130 bar. It is concluded that the good performance of the precooling refrigerator is significant in the liquefiers, because at low precooling temperatures high values of the liquid yield and the FOM can be achieved without compression of gas to a very high pressure.

  • PDF

천연가스 내 미량의 수소함량이 가스터빈의 연소특성에 미치는 영향 (Effect of low H2 content in natural gas on the Combustion Characteristics of Gas Turbine)

  • 이민철;박세익;김성철;윤지수;주성필;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.109-110
    • /
    • 2013
  • This paper describes gas turbine combustion characteristics of synthetic natural gas which contains a small amount hydrogen content. By conducting ambient pressure high temperature combustion test at gas turbine relevant combustor geometry, the combustion characteristics such as combustion instability, NOx and CO emission, temperatures at turbine inlet, nozzle and dump plane, and flame structure from high speed OH chemiluminescence images were investigated when changing hydrogen content from zero to 5%. From the results, qualitative and quantitative relationships are derived between key aspects of combustion performance, notably NOx/CO emission and combustion instability. Natural gas containing hydrogen up to 5% does not show significant difference in view of all combustion characteristics except combustion instability. Only up to 1% hydrogen addition could not change the pressure fluctuation and phase gas between fluctuations of pressure and heat release. From the results, it can be concluded that synthetic national gas which contains 1% of hydrogen can be guaranteed for the stable and reliable operation of natural gas firing gas turbine.

  • PDF

수소저장용 금속수소화물$(Mm(La_{0.6-0.8})Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2})$의 전열촉진 (Heat transfer enhancement of metal hydride $(Mm(La_{0.6-0.8})Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2})$ for hydrogen storage)

  • 배상철
    • 신재생에너지
    • /
    • 제2권2호
    • /
    • pp.75-80
    • /
    • 2006
  • The effective thermal conductivities of $Mm(La_{0.6-0.8})Ni_{4.0}Co_{0.6}Mn_{0.2}Al_{0.2}$ [TL-492] with hydrogen and helium have been examined. Experiment results show that pressure has great influence on effective thermal conductivity in low pressure range [below 0.5 MPa]. And that influence decreases rapidly with increase of gas pressure. The reason is at low pressure, the mean free path of gas becomes greater than effective thickness of gas film which is important to the heat transfer mechanism in this research. And, carbon fibers have been used to try to enhance the poor thermal conductivity of TL-492. Three types of carbon fibers and three mass fractions have been examined and compared. Naturally, the highest effective thermal conductivity has been reached with carbon fiber which has highest thermal conductivity, and highest mass fraction. This method has acquired 4.33 times higher thermal conductivity than pure metal hydrides with quite low quantity of additives, only 0.99 wt% of carbon fiber. This is a good result comparing to other method which can reach higher effective thermal conductivity but needs much higher mass fraction of additives too.

  • PDF

Low Temperature Adsorption of Hydrogen on Nanoporous Materials

  • Jhung, Sung-Hwa;Yoon, Ji-Woong;Kim, Hye-Kyung;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권7호
    • /
    • pp.1075-1078
    • /
    • 2005
  • Hydrogen adsorption on various porous materials have been studied with a volumetric method at low temperature in the pressure of 0-760 torr. Their hydrogen uptakes depend at least partly on microporosity rather than total porosity. However, it is also necessary to consider other parameters such as pore size and pore architecture to explain the adsorption capacity. The heat of adsorption and adsorption-desorption-readsorption experiments show that the hydrogen adsorption over the porous materials are composed of physisorption with negligible contribution of chemisorption. Among the porous materials studied in this work, SAPO-34 has the highest adsorption capacity of 160 mL/g at 77 K and 1 atm probably due to high micropore surface area, micropore volume and narrow pore diameter.

A HYDROGEN FUELLED V-8 ENGINE FOR CITY-BUS APPLICATION

  • Sierens, R.;Verhelst, S.
    • International Journal of Automotive Technology
    • /
    • 제2권2호
    • /
    • pp.39-45
    • /
    • 2001
  • Hydrogen is seen as one of the important energy vectors of the next century. Hydrogen as a renewable energy source, provides the potential for a sustainable development particularly in the transportation sector. Hydrogen driven vehicles reduce both local as well as global emissions. The laboratory of transporttechnology (University of Gent) converted a GM/Crusader V-8 engine for hydrogen use. Once the engine is optimised, it will be built in a low-floor midsize hydrogen city bus for public demonstration. For a complete control of the combustion process and to increase the resistance to backfire (explosion of the air-fuel mixture in the inlet manifold), a sequential timed multipoint injection of hydrogen and an electronic management system is chosen. The results as a function of the engine parameters (ignition timing. injection timing and duration, injection pressure) we given. Special focus is given to topics related to the use of hydrogen as a fuel: ignition characteristics (importance of electrode distance), quality of the lubricating oil (crankcase gases with high contents of hydrogen), oxygen sensors (very lean operating conditions), noise reduction (configuration and length of inlet pipes). The advantages and disadvantages of a power regulation only by the air to fuel ratio (as for diesel engines) against a throttle regulation (normal gasoline or gas regulation) are examined. Finally the goals of the development of the engine are reached: power output of 90 kW, torque of 300 Nm, extremely low emission levels and backfire-safe operation.

  • PDF

고압하에서 수소-산소 확산화염의 소염 특성에 관한 수치 해석 (A numerical analysis on the extinction of hydrogen-oxygen diffusion flames at high pressure)

  • 손채훈;김종수;정석호;이수룡
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1174-1184
    • /
    • 1997
  • Extinction characteristics of pure hydrogen-oxygen diffusion flames, at high pressures in the neighborhood of the critical pressure of oxygen, is numerically studied by employing counterflow diffusion flame as a model flame let in turbulent flames in rocket engines. The numerical results show that extinction strain rate increases almost linearly with pressure up to 100 atm, which can be explained by comparison of the chain-branching-reaction rate with the recombination-reaction rate. Since contributions of the chain-branching reactions, two-body reactions, are found to be much greater than those of the recombination reactions, three-body reactions, extinction is controlled by two-body reactions, thereby resulting in the linearity of extinction strain rate to pressure. Therefore, it is found that the chemical kinetic behaviors don't change up to 100 atm. Consideration of the pressure fall-off reactions shows a slight increase in extinction strain rate, but does not modify its linearity to pressure. The reduced kinetic mechanisms, which were verified at low pressures, are found to be still valid at high pressures and show good qualitative agreement in prediction of extinction strain rates. Effect of real gas is negligible on chemical kinetic behaviors of the flames.

밸브 타이밍 지각과 과급에 의한 흡기관 분사식 수소기관의 고성능 실현 (The Realization of High Performance in a Hydrogen-Fueled Engine with External Mixture by Retarding Valve Timing and Super Charging)

  • 이광주;허상훈;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제20권6호
    • /
    • pp.464-470
    • /
    • 2009
  • In order to analysis the possibility of high expansion and performance without backfire in a hydrogenfueled engine using external mixture injection, combustion characteristics and performance enhancement were analyzed in terms of retarding valve timing and increasing the boosting pressure. As the results, it was found that thermal efficiency increased by retarding intake valve timing with the same level of supplied energy is over 6.6% by the effect of high expansion including effect of combustion enhancement due to supercharging. It was also shown that the achievement of high power (equal to that of a gasoline engine), low brake specific fuel consumption and low emission (NOx of less than 16 ppm) without backfire in a hydrogen-fueled engine is possible around a boosting pressure of 1.5 bar, intake valve opening time of TDC and $\Phi$=0.35 in fuel-air equivalence ratio.

유한요소법을 이용한 수소충전용 압력용기의 균열에 관한 연구 (A Study on Crack of Hydrogen Filling Pressure Vessel Using Finite Element Method)

  • 최하영;변성광;조승현
    • 한국가스학회지
    • /
    • 제27권3호
    • /
    • pp.116-122
    • /
    • 2023
  • 저탄소 친환경에너지 정책이 진행으로 인해 수소 공급을 위한 수소충전소의 증가됨에 따라 사고발생 위험도 커지고 있다. 실제 압력용기는 제조과정에서 발생할 수 있는 노치와 기공, 개재물 등의 결함이 존재할 수 있다. 따라서 내압이 작용하고 있는 압력용기에 균열이 존재할 경우에 대한 압력용기의 건전성을 평가하는 것은 필요하다. 본 연구에서는 표면균열이 있는 수소충전용 압력용기의 구조안전성을 평가하기 위해 3차원 유한요소해석을 이용하였으며, 표면균열의 형상은 일반적으로 많이 사용되는 반타원 형상을 적용하여 균열의 형상 및 응력비에 대한 균열진전 특성을 비교하였다. 향후, 이러한 결과를 이용하여 파괴역학을 고려한 압력용기의 잔존수명 예측에 활용할 예정이다.

Hydrogen Production by the Photocatalystic Effects in the Microwave Water Plasma

  • Jang, Soo-Ouk;Kim, Dae-Woon;Koo, Min;Yoo, Hyun-Jong;Lee, Bong-Ju;Kwon, Seung-Ku;Jung, Yong-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.284-284
    • /
    • 2010
  • Currently, hydrogen has been produced by Steam Reforming or partial oxidation reforming processes mainly from oil, coal, and natural gas and results in the production of $CO_2$. However, these are influenced greatly on the green house effect of the earth. so it is important to find the new way to produce hydrogen utilizing water without producing any environmentally harmful by-products. In our research, we use microwave water plasma and photocatalyst to improve dissociation rate of water. At low pressure plasma, electron have high energy but density is low, so temperature of reactor is low. This may cause of recombination in the generated hydrogen and oxygen from splitting water. If it want to high dissociation rate of water, it is necessary to control of recombination of the hydrogen and oxygen using photocatalyst. We utilize the photocatalytic material($TiO_2$, ZnO) coated plasma reactor to use UV in the plasma. The quantity of hydrogen generated was measured by a Residual Gas Analyzer.

  • PDF

고압 중수소 열처리 효과에 의해 조사된 수소 결합 관련 박막 게이트 산화막의 열화 (Hydrogen-Related Gate Oxide Degradation Investigated by High-Pressure Deuterium Annealing)

  • 이재성
    • 대한전자공학회논문지SD
    • /
    • 제41권11호
    • /
    • pp.7-13
    • /
    • 2004
  • 두께가 약 3 nm 인 게이트 산화막을 갖는 P 및 NMOSFET를 제조하여 높은 압력 (5 atm.)의 중수소 및 수소 분위기에서 후속 열처리를 각각 행하여 중수소 효과(동위원소 효과)를 관찰하였다. 소자에 대한 스트레스는 -2.5V ≤ V/sub g/ ≤-4.0V 범위에서 100℃의 온도를 유지하며 진행되었다. 낮은 스트레스 전압에서는 실리콘 계면에 존재하는 정공에 의하여 게이트 산화막의 열화가 진행되었다. 그러나 스트레스 전압을 증가시킴으로써 높은 에너지를 갖는 전자에 의한 계면 결함 생성이 열화의 직접적인 원인이 됨을 알 수 있었다. 본 실험조건에서는 실리콘 계면에서 phonon 산란이 많이 발생하여 impact ionization에 의한 "hot" 정공의 생성은 무시할 수 있었다. 중수소 열처리를 행함으로써 수소 열처리에 비해 소자의 파라미터 변화가 적었으며, 게이트 산화막의 누설전류도 억제됨이 확인되었다. 이러한 결과로부터 impact ionization이 발생되지 않을 정도의 낮은 스트레스 전압동안 발생하는 게이트 산화막내 결함 생성은 수소 결합과 직접적인 관계가 있음을 확인하였다.