• Title/Summary/Keyword: low power routing

Search Result 127, Processing Time 0.025 seconds

The Algorithm for an Energy-efficient Particle Sensor Applied LEACH Routing Protocol in Wireless Sensor Networks (무선센서네트워크에서 LEACH 라우팅 프로토콜을 적용한 파티클 센서의 에너지 효율적인 알고리즘)

  • Hong, Sung-Hwa;Kim, Hoon-Ki
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.13-21
    • /
    • 2009
  • The sensor nodes that form a wireless sensor network must perform both routing and sensing roles, since each sensor node always has a regular energy drain. The majority of sensors being used in wireless sensor networks are either unmanned or operated in environments that make them difficult for humans to approach. Furthermore, since many wireless sensor networks contain large numbers of sensors, thus requiring the sensor nodes to be small in size and cheap in price, the amount of power that can be supplied to the nodes and their data processing capacity are both limited. In this paper, we proposes the WSN(Wireless Sensor Network) algorithm which is applied sensor node that has low power consumption and efficiency measurement. Moreover, the efficiency routing protocol is proposed in this paper. The proposed algorithm reduces power consumption of sensor node data communication. It has not researched in LEACH(Low-Energy Adaptive Clustering Hierarchy) routing protocol. As controlling the active/sleep mode based on the measured data by sensor node, the energy consumption is able to be managed. In the event, the data is transferred to the local cluster head already set. The other side, this algorithm send the data as dependent on the information such as initial and present energy, and the number of rounds that are transformed into cluster header and then transferred. In this situation, the assignment of each node to cluster head evenly is very important. We selected cluster head efficiently and uniformly distributed the energy to each cluster node through the proposed algorithm. Consequently, this caused the extension of the WSN life time.

A Route Repair Scheme for Reducing DIO Poisoning Overhead in RPL-based IoT Networks (RPL 기반 IoT 네트워크에서 DIO Poisoning 오버헤드를 감소시키는 경로 복구 방법)

  • Lee, Sung-Jun;Chung, Sang-Hwa
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1233-1244
    • /
    • 2016
  • In the IoT network environments for LLNs(Low power and Lossy networks), IPv6 Routing Protocol for Low Power and Lossy networks(RPL) has been proposed by IETF(Internet Engineering Task Force). The goal of RPL is to create a directed acyclic graph, without loops. As recommended by the IETF standard, RPL route recovery mechanisms in the event of a failure of a node should avoid loop, loop detection, DIO Poisoning. In this process, route recovery time and control message might be increased in the sub-tree because of the repeated route search. In this paper, we suggested RPL route recovery method to solve the routing overhead problem in the sub-tree during a loss of a link in the RPL routing protocol based on IoT wireless networks. The proposed method improved local repair process by utilizing a route that could not be selected as the preferred existing parents. This reduced the traffic control packet, especially in the disconnected node's sub tree. It also resulted in a quick recovery. Our simulation results showed that the proposed RPL local repair reduced the recovery time and the traffic of control packets of RPL. According to our experiment results, the proposed method improved the recovery performance of RPL.

Two Solutions for Unnecessary Path Update Problem in Multi-Sink Based IoT Networks (멀티 싱크 기반 IoT 네트워크에서 불필요한 경로 업데이트 문제와 두 가지 해결 기법)

  • Lee, Sungwon;Kang, Hyunwoo;Yoo, Hongsoek;Jeong, Yonghwan;Kim, Dongkyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2450-2460
    • /
    • 2015
  • Recently, as interest in IoT (Internet of Things) increase, research and standardization of a new protocol which reflects the characteristics of IoT has progressed. Among them, RPL(IPv6 for Low-Power Lossy Network) is a standardized routing protocol for IoT. RPL utilizes DIO (DODAG Information Object) messages which is flooded from the sink node to the whole network for path establish and maintenance. However, in large scale networks, not only a long time is required to propagate the DIO message to the whole networks but also a bottleneck effect around the sink node is occurred. Multi-sink based approaches which take advantage of reducing routing overhead and bottleneck effect are widely used to solve these problems. In this paper, we define 'unnecessary path update problems' that may arise when applying the RPL protocol to the multi sink based IoT networks and propose two methods namely Routing Metric based Path Update Decision method and Immediate Successor based Path Update Decision method for selective routing update.

Low-power Routing Algorithm using Routing History Cache for Wireless Sensor Network (RHC(Routing History Cache)를 사용한 저전력 소모 라우팅 알고리즘)

  • Lee, Doo-Wan;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2441-2446
    • /
    • 2009
  • Wireless Sensor Network collects a data from the specific area and the control is composed of small sensor nodes. Like this sensors to after that is established at the beginning are operated with the battery, the operational duration until several years must be continued from several months and will be able to apply the resources which is restricted in efficiently there must be. In this paper RHC (rounting history cache) applies in Directed Diffusion which apply a data central concept a reliability and an efficiency in data transfer course set. RHC algorithms which proposes each sensor node updated RHC of oneself with periodic and because storing the optimization course the course and, every event occurrence hour they reset the energy is wasted the fact that a reliability with minimization of duplication message improved.

An Efficient Routing Scheme based on Link Quality and Load Balancing for Wireless Sensor Networks (무선 센서 네트워크에서 링크 상태 및 트래픽 분산 정보를 이용한 효과적인 라우팅 방법)

  • Kim, Sun-Myeng;Yang, Yeon-Mo
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.11-19
    • /
    • 2010
  • ZigBee is a standard for wireless personal area networks(WPANs) based on the IEEE 802.15.4 standard. It has been developed for low cost and low power consumption. There are two alternative routing schemes that have been proposed for the ZigBee standard: Ad-hoc On-Demand Distance Vector(AODV) and tree routing. The tree routing forwards packets from sensors to a sink node based on the parent-child relationships established by the IEEE 802.15.4 MAC topology formation procedure. In order to join the network, a sensor node chooses an existing node with the strongest RSSI(Received signal strength indicator) signal as a parent node. Therefore, some nodes carry a large amount of traffic load and exhaust their energy rapidly. To overcome this problem, we introduce a new metric based on link quality and traffic load for load balancing. Instead of the strength of RSSI, the proposed scheme uses the new metric to choose a parent node during the topology formation procedure. Extensive simulation results using TOSSIM(TinyOS mote SIMulator) show that the CFR scheme outperforms well in comparison to the conventional tree routing scheme.

Resilient Routing Protocol Scheme for 6LoWPAN (6LoWPAN에서 회복력 있는 라우팅 프로토콜 기법)

  • Woo, Yeon Kyung;Park, Jong Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.141-149
    • /
    • 2013
  • IETF 6LoWPAN standard technique has been studied in IoT environment to support the IPv6 packet communication. 6LoWPAN protocol for transmission of packets mainly in the AODV routing protocol and a variety of extended techniques have been investigated. In particular, consisting of nodes with limited resources in a network error occurs when the 6LoWPAN reliable data transfer and fast routing method is needed. To this end, in this paper, we propose resilient routing protocol and extension of IETF LOAD algorithm, for optimal recovery path, More specifically, the optimal recovery path setup algorithm, signal flow, and detailed protocols for the verification of the reliability of packet transmission mathematical model is presented. The proposed protocol techniques to analyze the performance of the NS-3 performance through the simulation results that is end-to-end delay, throughput, packet delivery fraction and control packet overhead demonstrated excellence in comparison with existing LOAD.

Switch Architecture and Routing Optimization Strategy Using Optical Interconnects for Network-on-Chip (광학적 상호연결을 이용한 네트워크-온-칩에서의 스위치 구조와 라우팅 최적화 방법)

  • Kwon, Soon-Tae;Cho, Jun-Dong;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.25-32
    • /
    • 2009
  • Recently, research for Network-on-chip(NoC) is progressing. However, due to the increase of system complexity and demand on high performance, conventional copper-based electrical interconnect would be faced with the design limitation of performance, power, and bandwidth. As an alternative to these problems, combined use of Electrical Interconnects(EIs) and Optical Interconnects(OIs) has been introduced. In this paper we propose efficient routing optimization strategy and hybrid switch architecture, which use OIs for critical path and EIs for non-critical path. The proposed method shows up to 25% performance improvement and 38% power reduction.

Performance Analysis of Shared Buffer Router Architecture for Low Power Applications

  • Deivakani, M.;Shanthi, D.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.736-744
    • /
    • 2016
  • Network on chip (NoC) is an emerging technology in the field of multi core interconnection architecture. The routers plays an essential components of Network on chip and responsible for packet delivery by selecting shortest path between source and destination. State-of-the-art NoC designs used routing table to find the shortest path and supports four ports for packet transfer, which consume high power consumption and degrades the system performance. In this paper, the multi port multi core router architecture is proposed to reduce the power consumption and increasing the throughput of the system. The shared buffer is employed between the multi ports of the router architecture. The performance of the proposed router is analyzed in terms of power and current consumption with conventional methods. The proposed system uses Modelsim software for simulation purposes and Xilinx Project Navigator for synthesis purposes. The proposed architecture consumes 31 mW on CPLD XC2C64A processor.

Improving the Reliability of IEEE 802.11s Based Wireless Mesh Networks for Smart Grid Systems

  • Kim, Jaebeom;Kim, Dabin;Lim, Keun-Woo;Ko, Young-Bae;Lee, Sang-Youm
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.629-639
    • /
    • 2012
  • A challenge faced by smart grid systems is providing highly reliable transmissions to better serve different types of electrical applications and improve the energy efficiency of the system. Although wireless networking technologies can provide high-speed and cost-effective solutions, their performance may be impaired by various factors that affect the reliability of smart grid networks. Here, we first suggest the use of IEEE 802.11s-based wireless LAN mesh networks as high-speed wireless backbone networks for smart grid infrastructure to provide high scalability and flexibility while ensuring low installation and management costs. Thereafter, we analyze some vital problems of the IEEE 802.11s default routing protocol (named hybrid wireless mesh protocol; HWMP) from the perspective of transfer reliability, and propose appropriate solutions with a new routing method called HWMP-reliability enhancement to improve the routing reliability of 802.11s-based smart grid mesh networking. A simulation study using ns-3 was conducted to demonstrate the superiority of the proposed schemes.

Low-power 6LoWPAN Protocol Design (저 전력 6LoWPAN 프로토콜 설계)

  • Kim, Chang-Hoon;Kim, Il-Hyu;Cha, Jung-Woo;Nam, In-Gil;Lee, Chae-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.274-280
    • /
    • 2011
  • Due to their rapid growth and new paradigm applications, wireless sensor networks(WSNs) are morphing into low power personal area networks(LoWPANs), which are envisioned to grow radically. The fragmentation and reassembly of IP data packet is one of the most important function in the 6LoWPAN based communication between Internet and wireless sensor network. However, since the 6LoWPAN data unit size is 102 byte for IPv6 MTU size is 1200 byte, it increases the number of fragmentation and reassembly. In order to reduce the number of fragmentation and reassembly, this paper presents a new scheme that can be applicable to 6LoWPAN. When a fragmented packet header is constructed, we can have more space for data. This is because we use 8-bits routing table ill instead of 16-bits or 54-bits MAC address to decide the destination node. Analysis shows that our design has roughly 7% or 22% less transmission number of fragmented packets, depending on MAC address size(16-bits or 54-bits), compared with the previously proposed scheme in RFC4944. The reduced fragmented packet transmission means a low power consumption since the packet transmission is the very high power function in wireless sensor networks. Therefore the presented fragmented transmission scheme is well suited for low-power wireless sensor networks.