• Title/Summary/Keyword: low power routing

Search Result 127, Processing Time 0.023 seconds

Super Cluster based Routing Protocol in Sensor Network

  • Noh Jae-hwan;Lee Byeong-jik;Kim Kyung-jun;Lee Ick-soo;Lee Suk-gyu;Han Ki-jun
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.193-198
    • /
    • 2004
  • In variety of environments for applications, wireless sensor networks have received increasing attention in the recent few years. But, sensor nodes have many limitations including battery power and communication range. These networks require robust wireless communicant protocols that are energy efficient and provide low latency. In this paper, we propose new protocol as is defined SCP. The key idea of SCP is that only one node which is defined as a Super-Cluster Header sends the combined data to the BS. We evaluated the effectiveness of SCP through experiments which have several parameter violations. Simulation results shows that performance of SCP is through better than other legacy protocol within the framework of energy cost, life time of the sensor network and fair distribution of the energy consumption.

  • PDF

Design and Implementation of Double-Key based Light Weight Security Protocol in Ubiquitous Sensor Network (유비쿼터스 센서 네트워크에서 더블키를 이용한 경량 보안 프로토콜 설계 및 구현)

  • Zhung, Yon-Il;Lee, Sung-Young
    • The KIPS Transactions:PartC
    • /
    • v.14C no.3 s.113
    • /
    • pp.239-254
    • /
    • 2007
  • Ubiquitous computing supports environment to freely connect to network without restrictions of place and time. This environment enables easy access and sharing of information, but because of easy unauthorized accesses, specified security policy is needed. Especially, ubiquitous sensor network devices use limited power and are small in size, so, many restrictions on policies are bound to happen. This paper proposes double-key based light weight security protocol, independent to specific sensor OS, platform and routing protocol in ubiquitous sensor network. The proposed protocol supports safe symmetric key distribution, and allows security manager to change and manage security levels and keys. This had a strong merit by which small process can make large security measures. In the performance evaluation, the proposed light weight security protocol using double-key in ubiquitous sensor network allows relatively efficient low power security policy. It will be efficient to ubiquitous sensor network, such as smart of ace and smart home.

Clustering Algorithm for Extending Lifetime of Wireless Sensor Networks (무선 센서 네트워크의 수명연장을 위한 클러스터링 알고리즘)

  • Kim, Sun-Chol;Choi, Seung-Kwon;Cho, Yong-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.77-85
    • /
    • 2015
  • Recently, wireless sensor network(WSN) have been used in various fields to implement ubiquitous computing environment. WSN uses small, low cost and low power sensors in order to collect information from the sensor field. This paper proposes a clustering algorithm for energy efficiency of sensor nodes. The proposed algorithm is based on conventional LEACH, the representative clustering protocol for WSN and it prolongs network and nodes life time using sleep technique and changable transmission mode. The nodes of the proposed algorithm first calculate their clustering participation value based on the distance to the neighbor nodes. The nodes located in high density area will have clustering participation value and it can turn to sleep mode. Besides, proposed algorithm can change transmission method from conventional single-hop transmission to multi-hop transmission according to the energy level of cluster head. Simulation results show that the proposed clustering algorithm outperforms conventional LEACH, especially non-uniformly deployed network.

The Method of Localization using Radical Line among Sensor Nodes under the Internet Of Things (사물 인터넷 환경에서 Radical Line을 이용한 센서 노드간의 지역화방법)

  • Shin, Bong-Hi;Jeon, Hye-Kyoung
    • Journal of Digital Convergence
    • /
    • v.13 no.7
    • /
    • pp.207-212
    • /
    • 2015
  • The sensor network that is component of the Internet of Things require a lot of research to select the best route to send information to the anchor node, to collect a number of environment and cost efficient for communication between the sensor life. On the sensor network in one of the components of IOT's environment, sensor nodes are an extension device with low power low capacity. For routing method for data transmission between the sensor nodes, the connection between the anchor and the node must be accurate with in adjacent areas relatively. Localization CA (Centroid Algorithm) is often used although an error frequently occurs. In this paper, we propose a range-free localization method between sensor nodes based on the Radical Line in order to solve this problem.

Prolonging Lifetime of the LEACH Based Wireless Sensor Network Using Energy Efficient Data Collection (에너지 효율적인 데이터 수집을 이용한 LEACH 기반 무전 센서 네트워크의 수명 연장)

  • Park, Ji-Won;Moh, Sang-Man;Chung, Il-Yong;Bae, Yong-Geun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.175-183
    • /
    • 2008
  • In wireless sensor networks with ad hoc networking capability, sensor nodes are battery operated and are usually disposable once deployed. As a result, each sensor node senses and communicates with limited energy and, thus, energy efficiency has been studied as a key design factor which determines lifetime of a wireless sensor network, and it is more improved recently by using so-called cross-layer optimization technique. In this paper, we propose and implement a new energy saving mechanism that reduces energy consumption during data collection by controlling transmission power at sensor nodes and then measure its performance in terms of lifetime improvement for the wireless sensor network platform ZigbeX. When every sensor node transmits sensed data to its clusterhead, it controls its transmission power down to as low level as communication is possible, resulting in energy saving. Each sensor node controls its transmission power based on RSSI(Received Signal Strength Indicator) of the packet received from its clusterhead. In other words, the sensor node can save energy by controlling its transmission power down to an appropriate level that its clusterhead safely receives the packet it transmits. According to the repetitive experiment of the proposed scheme on the ZigbeX platform using the packet analyzer developed by us, it is observed that the network lifetime is prolonged by up to 21.9% by saying energy during the data collection occupying most amount of network traffic.

A Routing Scheme Considering Bottleneck and Route Link Quality in RPL-based IoT Wireless Networks (RPL 기반 IoT 무선 네트워크에서 노드 병목 및 전송 경로 품질을 고려한 라우팅 기법)

  • Jung, Ik-Joo;Chung, Sang-Hwa;Lee, Sung-Jun
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1268-1279
    • /
    • 2015
  • In order to manage a large number of devices connected to the Internet of Things (IoT), the Internet Engineering Task Force (IETF) proposed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). The route of the RPL network is generated through the use of an Objective Function (OF) that is suitable for the service that is required for the IoT network. Since the route of the RPL network is conventionally simply chosen only by considering the link quality between the nodes, it is sensible to seek an OF that can also provide better Quality of Service (QoS). In previous studies, the end-to-end delay might possibly be sub-optimal because they only deal with problems related to the reduction of energy consumption and not to the link quality on the path to the sink node. In this study, we propose a scheme that reduces the end-to-end delay but also gives full consideration to both the quality on the entire route to the destination and to the expected lifetime of nodes with bottlenecks from heaped traffic. Weighting factors for the proposed scheme are chosen by experiments and the proposed scheme can reduce the end-to-end delay and the energy consumption of previous studies by 20.8% and 10.5%, respectively.

A Design of Wireless Sensor Node Using Embedded System (임베디드 시스템을 활용한 무선 센서 노드설계)

  • Cha, Jin-Man;Lee, Young-Ra;Park, Yeon-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.623-628
    • /
    • 2009
  • The emergence of compact and low-power wireless communication sensors and actuators in the technology supporting the ongoing miniaturization of processing and storage allows for entirely the new kinds of embedded systems. These systems are distributed and deployed in environments where they may have been designed into a particular control method, and are often very dynamic. Collection of devices can communicate to achieve a higher level of coordinated behavior. Wireless sensor nodes deposited in various places provide light, temperature, and activity measurements. Wireless sensor nodes attached to circuits or appliances sense the current or control the usage. Together they form a dynamic and multi-hop routing network connecting each node to more powerful networks and processing resources. Wireless sensor networks are a specific-application and therefore they have to involve both software and hardware. They also use protocols that relate to both applications and the wireless network. Wireless sensor networks are consumer devices supporting multimedia applications such as personal digital assistants, network computers, and mobile communication devices. Wireless sensor networks are becoming an important part of industrial and military applications. The characteristics of modem embedded systems are the capable of communicating adapting the different operating environments. In this paper, We designed and implemented sensor network system which shows through host PC sensing temperature and humidity data transmitted for wireless sensor nodes composed wireless temperature and humidity sensor and designs sensor nodes using embedded system with the intention of studying USN.