• Title/Summary/Keyword: low power network

Search Result 1,244, Processing Time 0.029 seconds

Memory Propagation-based Target-aware Segmentation Tracker with Adaptive Mask-attention Decision Network

  • Huanlong Zhang;Weiqiang Fu;Bin Zhou;Keyan Zhou;Xiangbo Yang;Shanfeng Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2605-2625
    • /
    • 2024
  • Siamese-based segmentation and tracking algorithms improve accuracy and stability for video object segmentation and tracking tasks simultaneously. Although effective, variability in target appearance and background clutter can still affect segmentation accuracy and further influence the performance of tracking. In this paper, we present a memory propagation-based target-aware and mask-attention decision network for robust object segmentation and tracking. Firstly, a mask propagation-based attention module (MPAM) is constructed to explore the inherent correlation among image frames, which can mine mask information of the historical frames. By retrieving a memory bank (MB) that stores features and binary masks of historical frames, target attention maps are generated to highlight the target region on backbone features, thus suppressing the adverse effects of background clutter. Secondly, an attention refinement pathway (ARP) is designed to further refine the segmentation profile in the process of mask generation. A lightweight attention mechanism is introduced to calculate the weight of low-level features, paying more attention to low-level features sensitive to edge detail so as to obtain segmentation results. Finally, a mask fusion mechanism (MFM) is proposed to enhance the accuracy of the mask. By utilizing a mask quality assessment decision network, the corresponding quality scores of the "initial mask" and the "previous mask" can be obtained adaptively, thus achieving the assignment of weights and the fusion of masks. Therefore, the final mask enjoys higher accuracy and stability. Experimental results on multiple benchmarks demonstrate that our algorithm performs outstanding performance in a variety of challenging tracking tasks.

Channel Grade Method of multi-mode mobile device for avoiding Interference at WPAN (WPAN에서 간섭을 피하기 위한 멀티모드 단말기 채널등급 방법)

  • Jung, Sungwon;Kum, Donghyun;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.91-98
    • /
    • 2015
  • There is a new evolution in technological advancement taking place called the Internet of Things (IoT), The IoT enables physical world objects in our surrounding to be connected to the Internet. ISM (Industrial Scientific Medical) band that is 2.4GHz band authorized free of charge is being widely used for smart devices. Accordingly studies have been continuously conducted on the possibility of coexistence among nodes using ISM band. In particular, the interference of IEEE 802.11b based Wi-Fi devices using overlapping channel during communication among IEEE 802.15.4 based wireless sensor nodes suitable for low-power, low-speed communication using ISM band. Because serious network performance deterioration of wireless sensor networks. In this paper, we will propose an algorithm that identifies the possibility of using more accurate channels by mixing utilization of interference signal and RSSI (Received Signal Strength Indicator) Min/Max/Activity of Interference signal by wireless sensor nodes. In addition, it will verify our algorithm by using OPNET Network verification simulator.

A Study on Dual-IDS Technique for Improving Safety and Reliability in Internet of Things (사물인터넷 환경에서 안전성과 신뢰성 향상을 위한 Dual-IDS 기법에 관한 연구)

  • Yang, Hwanseok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.1
    • /
    • pp.49-57
    • /
    • 2017
  • IoT can be connected through a single network not only objects which can be connected to existing internet but also objects which has communication capability. This IoT environment will be a huge change to the existing communication paradigm. However, the big security problem must be solved in order to develop further IoT. Security mechanisms reflecting these characteristics should be applied because devices participating in the IoT have low processing ability and low power. In addition, devices which perform abnormal behaviors between objects should be also detected. Therefore, in this paper, we proposed D-IDS technique for efficient detection of malicious attack nodes between devices participating in the IoT. The proposed technique performs the central detection and distribution detection to improve the performance of attack detection. The central detection monitors the entire network traffic at the boundary router using SVM technique and detects abnormal behavior. And the distribution detection combines RSSI value and reliability of node and detects Sybil attack node. The performance of attack detection against malicious nodes is improved through the attack detection process. The superiority of the proposed technique can be verified by experiments.

Performance Evaluation of CoAP-based Internet-of-Things System (CoAP 기반 사물인터넷 시스템 성능평가)

  • Choo, Young Yeol;Ha, Yong Jun;Son, Soo Dong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.2014-2023
    • /
    • 2016
  • Web presence is one of the key issues for extensive deployment of Internet-of-Things (IoT). An obstacle to overcome for Web presence is relatively low computing power of IoT devices. In this paper, we present implementation of an IoT platform based on Constrained Application Protocol (CoAP) which is a web transfer protocol proposed by Internet Engineering Task Force (IETF) for the low performance IoT devices such as Wireless Sensor Network (WSN) nodes and micro-controllers. To qualify the performance of CoAP-based IoT system for such an application as smart grid, we designed a test platform consisting of Raspberry Pi2, Kmote WSN node and a desktop PC. Using open source softwares, CoAP was implemented on top of the platform. Leveraging the GET command defined at CoAP specification, performance of the system was measured in terms of round-trip time (RTT) from web application to the Kmote sensor node. To investigate abnormal cases among the test results, hop-by-hop delays were measured to analyze resulting data. The average response time of CoAP-based communication except the abnormal data was reduced by 23% smaller than the previous research result.

Partial Discharge Measurement by a Capacitive Voltage Probe in a Gas Insulated Switch (가스절연개폐기에서 용량성 전압프로브를 이용한 부분방전의 측정)

  • Kil, Gyung-Suk;Park, Dae-Won;Choi, Su-Yeon;Kim, Il-Kwon;Park, Chan-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.85-89
    • /
    • 2008
  • An objective of this paper is to develop a partial discharge (PD) measurement device for monitoring gas insulated switches installed in power distribution system. A capacitive voltage probe was studied and designed to detect PD pulse without an electrical connection. The PD measurement device consists of the capacitive voltage probe attached outside of a bushing, a coupling network which attenuates AC voltage by 270 dB, and a low noise amplifier with the gain of 40 dB in ranges of 500 kHz${\sim}$20 MHz. The sensitivity of the prototype device calculated by a calibrator was 1.98 m V /pc. An application experiment was carried out in a 25.8 kV gas insulated switch and the peak pulse of 76.7 pC was detected. From the experimental results, it is expected that the PD measurement device can be applied to online monitoring system of gas insulated switches.

Design and Implementation of Real-Time Vehicle Safety System based on Wireless Sensor Networks (무선 센서 네트워크 기반의 실시간 차량 안전 시스템 설계 및 구현)

  • Hong, YouSik;Oh, Sei-JIn;Kim, Cheonshik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Wireless sensor networks achieve environment monitoring and controlling through use of small devices of low cost and low power. Such network is comprised of several sensor nodes, each having a microprocessor, sensor, actuator and wired/wireless transceiver inside a small device. In this paper, we employ the sensor networks in order to design and implement a real-time vehicle safety system. Such system can inform the safe velocity in a specific weather condition to drivers in advance through analyzing the weather data collected from sensor networks. As a result, the drivers can prevent effectively accidents by controlling their car speed.

  • PDF

Link Performance Analysis of LoRa for Real-time Information Gathering in Maritime Conditions (실시간 해상 정보 수집을 위한 LoRa 링크 성능분석)

  • Shin, Jaeho;Lim, Junyeong;Kim, Donghyun;Kim, Jongdeok
    • Journal of KIISE
    • /
    • v.45 no.3
    • /
    • pp.303-310
    • /
    • 2018
  • LoRaWAN(Long Range Wide Area Network) is a standard for low-power, long-range, low-speed communication as announced in the LoRa Alliance. LoRaWAN addresses the physical layer and medium access control layer and the technology used in the physical layer is referred to as LoRa. LoRa can be used for remote monitoring and remote control in maritime conditions. However, unlike land, marine environment is not only difficult to construct an infrastructure for service provision, but also difficult to analyze LoRa performance in maritime. In this study, we construct an infrastructure using cloud platform and analyze LoRa link performance in maritime conditions.

The Protective Co-ordination between Low-Voltage Circuit-Breaker (저압차단기기의 보호협조)

  • Park, S.C.;Oh, J.S.;Lee, B.W.;Ryu, M.J.;Seo, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.340-343
    • /
    • 2001
  • In an electrical network, electrical power are transmitted by a various of protection, isolation and control electric circuit devices. This thesis deals with the protection function between circuit-breakers. The protective coordination concerns the behaviour of two devices placed in series in an electrical network, with a short-circuit downstream circuit-breaker. It has two basic principles: First, discrimination which is an increasing requirement of low voltage electrical distribution systems. Second, which is less well known: cascading, which consists of installing a device, whose breaking capacity is less than the three-phase short-circuit current at its terminals and helped by main circuit-breaker. The important advantage of cascading is to be able to install at a branch circuit-breaker of a lesser performance without endangering the safety of the installation for more economical usage. To determine and guarantee co-ordination between two circuit breakers, it is necessary to carry out a theoretical approach, first, and then confirm the results by means of standard tests. This is illustrated in appendix A of IEC 947-2.

  • PDF

Characteristics of Transient State and Stress of Three-Phase Switched Trans Z-Source DC/AC Power Converter (3상 Switched Trans Z-소스 직류/교류 전력변환기의 스트레스 및 과도상태 특성)

  • Lim, Young-Cheol;Kim, Se-Jin;Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.57-66
    • /
    • 2012
  • When typical Z-source DC/AC inverter(ZSI) is operated in high voltage gain area, because of its high duty ratio, voltage and current stress in Z-network of typical ZSI are increased. This paper proposes a new switched trans ZSI(STZSI) with two switched trans cells which consist of one trans and two diodes. To confirm the operation performance of the proposed system, the PSIM simulation is performed for typical ZSI, switched inductor ZSI and the proposed STZSI. Voltage / current stress and transient state characteristics of each method are compared under the condition of DC input voltage 100[V] and output phase voltage 66[Vrms]. As a result, we confirmed that transient state of the proposed STZSI is short compared with the conventional ZSI because the high voltage gain is obtained using the same duty ratio, also a low duty ratio is required for the same output voltage. Finally, we could know the proposed system have low voltage and current stress in Z-network compared with the conventional ZSI.

FPGA Prototype Design of Dynamic Frequency Scaling System for Low Power SoC (저전력 SoC을 위한 동적 주파수 제어 시스템의 FPGA 프로토타입 설계)

  • Jung, Eun-Gu;Marculescu, Diana;Lee, Jeong-Gun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.11
    • /
    • pp.801-805
    • /
    • 2009
  • Hardware based dynamic voltage and frequency scaling is a promising technique to reduce power consumption in a globally asynchronous locally synchronous system such as a homogeneous or heterogeneous multi-core system. In this paper, FPGA prototype design of hardware based dynamic frequency scaling is proposed. The proposed techniques are applied to a FIFO based multi-core system for a software defined radio and Network-on-Chip based hardware MPEG2 encoder. Compared with a references system using a single global clock, the first prototype design reduces the power consumption by 78%, but decreases the performance by 5.9%. The second prototype design shows that power consumption decreases by 29.1% while performance decreases by 0.36%.